跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇韻文
研究生(外文):Su, Y. Devin
論文名稱:鈣離子感測用氮化銦場效電晶體
論文名稱(外文):Calcium Ions Detection Using InN Ion Sensitive Field Effect Transistor
指導教授:葉哲良葉哲良引用關係
指導教授(外文):Yeh, J. Andrew
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:86
中文關鍵詞:鈣離子氮化銦感測器場效電晶體
外文關鍵詞:calcium ionsInNsensorFET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:2
超薄膜氮化銦(~10奈米)離子感測場效電晶體(ISFET)在閘極表面利用分子氣相沉積儀(MVD)修飾上3-aminopropyltrimethoxysilane (APTMS),來實行對鈣離子的選擇性偵測。超薄膜氮化銦離子感測場效電晶體,本身對陰離子有很高的靈敏度和很短的反應時間,在化學或生物分子偵測應用上面有極大的潛力。氮化銦表面經由氧電漿(O2 plasma)清洗,再經過一小時APTMS的沉積後,水接觸角由74o變化到61o。APTMS尾端官能基為–NH2基,繼續與交聯劑(Cross-linker)戊二醛反應,與鈣離子選擇物磷化酪氨酸(p-Tyr)鍵結,尾端帶磷酸根。將氮化銦離子感測場效電晶體浸入1 mM p-Tyr 溶液12 小時之後,修飾完成的氮化銦離子感測場效電晶體利用錯合反應來對鈣離子作偵測。此時可觀察到當鈣離子加入時,源極-汲極的電流會有上升的現象,電流會上升是因為磷化酪氨酸的磷酸根與帶正電的鈣離子產生錯合反應,在通道表面提高了電子濃度。靈敏度大約1.11 %/decade,偵測極限為10-6 M。當我們做離子選擇性測試時,將元件分別浸入氯化鈉、氯化鉀、氯化鎂溶液中,可以算出鈣離子的電流變化大約分別為鈉、鉀、鎂三種離子的6.53倍、3.2倍與27.9倍。
Ultrathin (~10 nm) InN ion sensitive field effect transistors (ISFETs) modified with 3-aminopropyltrimethoxysilane (APTMS) by molecular vapor deposition (MVD). It is used to selectively detect calcium ions. The ultrathin InN ISFETs have high sensitivity and short response time for anion detection, showing a great potential for chemical and biological sensing applications. The change of water contact angle on InN surface was observed from 74o, indicating the O2 plasma cleaning, to 61o after 1 hour vapor deposition. APTMS with –NH2 terminal functional groups react to the cross-linker, glutaraldehyde, is used to immobilize O-phospho-l-tyrosine (p-Tyr) with phosphate end. After immersed in 1 mM p-Tyr solution for 12 hours, the functionalized InN ISFET is used to complex with calcium ion. A source-drain current increase is observed when calcium ion introduced to the gate region of ISFETs. The current increase is attributed to the binding of positively charged calcium ion. The sensitivity is about 1.11 %/decade, and detection limit is 10-6 M. When InN ISFET is immersed to sodium chloride, potassium chloride, magnesium chloride solution individually, we can calculate that the sensitivity on calcium ion is 6.53, 3.2, 27.9 times than sodium, potassium, and magnesium ions.
摘要 I
ABSTRACT II
目錄 III
圖目錄 IV
表目錄 VII
符號表 VIII
第一章 前言 1
1.1 研究背景 1
1.2 鈣的調節 2
1.3 血鈣疾病 4
1.4 研究動機與目標 6
1.5 全文架構 7
第二章 文獻回顧 8
2.1 氮化銦離子感測場效電晶體 8
2.1.1氮化銦表面電子累積性質 8
2.1.2氮化銦表面陰離子吸附特性 11
2.1.3離子選擇場效電晶體效能參數 13
2.2 表面化學修飾 14
2.3 鈣離子選擇性感測 16
2.3.1 光學感測法 17
2.3.2 電學感測法 18
2.4 離子水溶液PH值理論計算 25
第三章 元件製造與研究方法 31
3.1 元件製造 31
3.1.1氮化銦離子感測場效電晶體設計 31
3.1.2製程步驟 33
3.1.3元件封裝 35
3.2 研究方法 36
3.2.1 實驗藥品 36
3.2.2 實驗流程 38
3.2.3 利用分子氣相沉積儀做表面修飾 40
3.2.4 鈣離子選擇物固化 42
3.2.5 離子水溶液準備 42
第四章 量測方法 43
4.1 表面化學修飾量測 43
4.1.1 接觸角量測 43
4.1.2光學顯微鏡 46
4.1.3電阻 48
4.2 元件電壓量測 49
4.2.1儀器設置 49
4.2.2電壓調變測試 51
4.3 元件電流量測 52
4.3.1儀器設置 52
4.3.2pH電流反應 54
4.3.3電壓電流轉換公式 56
第五章 量測結果與討論 57
5.1 元件動態電流量測 57
5.1.1修飾前氯化鈣動態電流量測 58
5.1.2修飾後氯化鈣動態電流量測 60
5.1.3修飾前後pH電流反應 64
5.1.4穩定性 65
5.2 選擇性 67
5.2.1修飾前後氯化鈉動態電流量測 67
5.2.2修飾前後氯化鉀動態電流量測 69
5.2.3修飾前後氯化鎂動態電流量測 71
5.2.4比較 73
5.3 閘極漏電流量測 75
5.3.1儀器設置 75
5.3.2氯化鈣水溶液量測 76
第六章 結論 78
第七章 未來工作 80
參考文獻 82

[1] M. J. Berridge, et al., "Calcium - a life and death signal," Nature, vol. 395, pp. 645-648, Oct 1998.
[2] M. D. Bootman, et al., "Calcium signalling - an overview," Seminars in Cell & Developmental Biology, vol. 12, pp. 3-10, Feb 2001.
[3] N. Chaniotakis and N. Sofikiti, "Novel semiconductor materials for the development of chemical sensors and biosensors: A review," Analytica Chimica Acta, vol. 615, pp. 1-9, May 2008.
[4] F. W. Scheller, et al., "Research and development in biosensors," Current Opinion in Biotechnology, vol. 12, pp. 35-40, Feb 2001.
[5] H. Lu, et al., "Surface chemical modification of InN for sensor applications," Journal of Applied Physics, vol. 96, pp. 3577-3579, Sep 2004.
[6] O. Kryliouk, et al., "Pt-coated InN nanorods for selective detection of hydrogen at room temperature," Journal of Vacuum Science & Technology B, vol. 23, pp. 1891-1894, Sep-Oct 2005.
[7] V. Y. Davydov, et al., "Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap," Physica Status Solidi B-Basic Research, vol. 229, pp. R1-R3, Feb 2002.
[8] J. Wu, et al., "Effects of the narrow band gap on the properties of InN," Physical Review B, vol. 66, Nov 2002.
[9] T. Matsuoka, et al., "Optical bandgap energy of wurtzite InN," Applied Physics Letters, vol. 81, pp. 1246-1248, Aug 2002.
[10] http://en.wikipedia.org/wiki/Wurtzite_crystal_structure.
[11] H. Lu, et al., "Surface charge accumulation of InN films grown by molecular-beam epitaxy," Applied Physics Letters, vol. 82, pp. 1736-1738, Mar 2003.
[12] I. Mahboob, et al., "Intrinsic electron accumulation at clean InN surfaces," Physical Review Letters, vol. 92, Jan 2004.
[13] D. E. Yates, et al., "SITE-BINDING MODEL OF ELECTRICAL DOUBLE-LAYER AT OXIDE-WATER INTERFACE," Journal of the Chemical Society-Faraday Transactions I, vol. 70, pp. 1807-1818, 1974.
[14] J. M. Kleijn, "THE ELECTRICAL DOUBLE-LAYER ON OXIDES - SITE-BINDING IN THE POROUS DOUBLE-LAYER MODEL," Colloids and Surfaces, vol. 51, pp. 371-388, Nov 1990.
[15] Y. S. Lu, et al., "InN-based anion selective sensors in aqueous solutions," Applied Physics Letters, vol. 91, Nov 2007.
[16] Y. S. Lu, et al., "Anion detection using ultrathin InN ion selective field effect transistors," Applied Physics Letters, vol. 92, May 2008.
[17] B. R. Eggins, Chemical sensors and biosensors: John Wiley, 2001.
[18] T. Williams and N. W. Barnett, "DETERMINATION OF MAGNESIUM AND CALCIUM BY ION CHROMATOGRAPHY WITH POSTCOLUMN REACTION FLUORESCENCE DETECTION," Analytica Chimica Acta, vol. 259, pp. 19-23, Apr 1992.
[19] T. Nguyen and Z. Rosenzweig, "Calcium ion fluorescence detection using liposomes containing Alexa-labeled calmodulin," Analytical and Bioanalytical Chemistry, vol. 374, pp. 69-74, Sep 2002.
[20] L. Basabe-Desmonts, et al., "Design of fluorescent materials for chemical sensing," Chemical Society Reviews, vol. 36, pp. 993-1017, 2007.
[21] L. C. Taylor, et al., "Sensors for detection of calcium associated with bacterial endospore suspensions," Analytica Chimica Acta, vol. 435, pp. 239-246, May 24 2001.
[22] S. K. Sharma, et al., "Selective recognition of Ca2+ ions using novel polymeric phenols," Microchemical Journal, vol. 90, pp. 89-92, Dec 2008.
[23] A. Persechini, et al., "Novel fluorescent indicator proteins for monitoring free intracellular Ca2+," Cell Calcium, vol. 22, pp. 209-216, Sep 1997.
[24] M. Suresh and A. Das, "New coumarin-based sensor molecule for magnesium and calcium ions," Tetrahedron Letters, vol. 50, pp. 5808-5812, Oct 21 2009.
[25] M. Shortreed, et al., "Fluorescent fiber optic calcium sensor for physiological measurements," Analytical Chemistry, vol. 68, pp. 1414-1418, Apr 15 1996.
[26] L. F. Capitan-Vallvey, et al., "Determination of calcium by a single-use optical sensor," Sensors and Actuators B-Chemical, vol. 71, pp. 140-146, Nov 15 2000.
[27] S. Nagasawa and I. Shimoyama, "Calcium concentration measurement by local fluorescent-dye injection," Sensors and Actuators B-Chemical, vol. 102, pp. 7-13, Sep 1 2004.
[28] M. Curreli, et al., "Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs," Ieee Transactions on Nanotechnology, vol. 7, pp. 651-667, Nov 2008.
[29] M. STANLEY D. MOSS, IEEE, CURTIS C. JOHNSON, SENIOR MEMBER, IEEE, AND JIRI JANATA, "Hydrogen, Calcium, and Potassium lon-Sensitive FET Transducers: A Preliminary Report," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 25, pp. 49-54, 1978.
[30] Z. Elbhiri, et al., "Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors," Talanta, vol. 52, pp. 495-507, Jun 30 2000.
[31] X. Y. Bi, et al., "Development of electrochemical calcium sensors by using silicon nanowires modified with phosphotyrosine," Biosensors & Bioelectronics, vol. 23, pp. 1442-1448, May 2008.
[32] D. Chin and A. R. Means, "Calmodulin: a prototypical calcium sensor," Trends in Cell Biology, vol. 10, pp. 322-328, Aug 2000.
[33] Y. Cui, et al., "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, Aug 2001.
[34] B. K. Oh, et al., "One-component room temperature vulcanizing-type silicone rubber based calcium-selective electrodes," Analytical Chemistry, vol. 68, pp. 503-508, Feb 1 1996.
[35] A. Bratov, et al., "Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk," Analytica Chimica Acta, vol. 408, pp. 57-64, Mar 9 2000.
[36] U. Trebbe, et al., "A new calcium-sensor based on ion-selective conductometric microsensors - membranes and features," Fresenius Journal of Analytical Chemistry, vol. 371, pp. 734-739, Nov 2001.
[37] J. Artigas, et al., "Development of a photopolymerisable membrane for calcium ion sensors - Application to soil drainage waters," Analytica Chimica Acta, vol. 426, pp. 3-10, Jan 1 2001.
[38] S. H. Wang, et al., "Development of a solid-state thick film calcium ion-selective electrode," Sensors and Actuators B-Chemical, vol. 96, pp. 709-716, Dec 1 2003.
[39] A. Bratov, et al., "Lowering the detection limit of calcium selective ISFETs with polymeric membranes," Talanta, vol. 62, pp. 91-96, Jan 9 2004.
[40] A. Shvarev and E. Bakker, "Distinguishing free and total calcium with a single pulsed galvanostatic ion-selective electrode," Talanta, vol. 63, pp. 195-200, May 10 2004.
[41] A. Kumar and S. K. Mittal, "PVC based dibenzo-18-crown-6 electrode for Ca(II) ions," Sensors and Actuators B-Chemical, vol. 99, pp. 340-343, May 1 2004.
[42] C. Jimenez, et al., "Nanostructures for chemical recognition using ISFET sensors," Microelectronics Journal, vol. 35, pp. 69-71, Jan 2004.
[43] A. Malon and M. Maj-Zurawska, "The new methods of determination of Mg2+, Ca2+, Na+ and K+ ions in erythrocytes by ion selective electrodes," Sensors and Actuators B-Chemical, vol. 108, pp. 828-831, Jul 22 2005.
[44] W. Y. Liao, et al., "Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis," Lab on a Chip, vol. 6, pp. 1362-1368, Oct 2006.
[45] A. K. Singh and S. Mehtab, "Calcium(II)-selective potentiometric sensor based on at-furildioxime as neutral carrier," Sensors and Actuators B-Chemical, vol. 123, pp. 429-436, Apr 10 2007.
[46] M. H. Asif, et al., "Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET," Biosensors & Bioelectronics, vol. 24, pp. 3379-3382, Jul 2009.
[47] M. H. Asif, et al., "Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor," Applied Physics Letters, vol. 95, Jul 2009.
[48] S. Beging, et al., "Field-effect calcium sensor for the determination of the risk of urinary stone formation," Sensors and Actuators B-Chemical, vol. 144, pp. 374-379, Feb 17 2010.
[49] S. Capel-Cuevas, et al., "Double-armed crown ethers for calcium optical sensors," Talanta, vol. 78, pp. 1484-1488, Jun 2009.
[50] J. W. Zhu, et al., "Magnesium-Selective Ion-Channel Mimetic Sensor with a Traditional Calcium Ionophore," Analytical Chemistry, vol. 82, pp. 436-440, Jan 2010.
[51] 林政毅, "修飾之氮化銦離子感測場效電晶體對DNA雜合反應偵測," 碩士, 電子工程研究所, 國立清華大學, 新竹, 2009.
[52] R. Khanna, et al., "Thermal stability of ohmic contacts to InN," Applied Physics Letters, vol. 90, pp. -, Apr 16 2007.
[53] C. F. Chen, et al., "Organosilane functionalization of InN surface," Applied Physics Letters, vol. 89, Dec 2006.
[54] S. Flink, et al., "Sensor Functionalities in Self-Assembled Monolayers," Advanced Materials, vol. 12, pp. 1315-1328, 2000.
[55] B. Kobrin, et al., "Molecular Vapor Deposition–An Improved Vapor-Phase Deposition Technique of Molecular Coatings for MEMS Devices," Semiconductor Equipment and Materials International, 2004.
[56] B. Kobrin, et al., "MVD Technique of Surface Modification," 2004.
[57] 何建霖, "氮化銦氫離子感應場效電晶體," 碩士, 奈米工程與微系統所, 國立清華大學, 新竹, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top