|
[1] A. Krstic, L. C.Wang, J. J. Liou, and M. S. Abadir, “Diagnosis-based post-silicon timing validation using statistical timing tools and methodologies,” Proceedings of IEEE International Test Conference, pp. 339–348, 2003. [2] Y.-Y. Chen and J.-J. Liou, “Extraction of statistical timing profiles using test data,” Proceedings of Design Automation Conference, pp. 509–514, June 2007. [3] P. Girard, C. Landrault, and S. Pravossoudovitch, “A Novel Approach to Delay-Fault Diagnosis,” Proceedings of Design Automation Conference, pp. 357–360, June 1992. [4] H. B. Wang, S. Y. Huang, and J. R. Huang, “Gate-delay fault diagnosis using the inject-andevaluate paradigm,” Proceedings of International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 117–125, Nov. 2002. [5] J. Ghosh-Dastidar and N. A. Touba, “A systematic approach for diagnosing multiple delay fauls,” Proceedings of Defect and Fault Tolerance in VLSI System, pp. 211–216, Nov. 1998. [6] ——, “Adaptive techniques for improving delay fault diagnosis,” Proceedings of IEEE VLSI Test Symposium, pp. 168–172, Apr. 1999. [7] O. Poku and R. D. Blanton, “Delay defect diagnosis using segment network faults,” Proceedings of IEEE International Test Conference, pp. 1–10, Oct. 2002. [8] Z. Wang, M. M. Marek-Sadowska, K. H. Tsai, and J. Rajski, “Delay-fault diagnosis using timing information,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1315–1325, Sept. 2005. 104 [9] A. Krstic, L. C. Wang, J. J. Liou, and M. S. Abadir, “Delay defect diagnosis based upon statistical timing models,” Proceedings of Design, Automation and Test in Europe, pp. 328– 333, 2003. [10] A. Krstic, L. C. Wang, J. J. Liou, and T. M. Mak, “Enhancing diagnosis resolution for delay defects based upon statistical timing and statistical fault models,” Proceedings of Design Automation Conference, pp. 668–673, June 2003. [11] A. Krstic, L. C.Wang, K. T. Cheng, and J. J. Liou, “Diagnosis of delay defects using statistical timing models,” Proceedings of IEEE VLSI Test Symposium, pp. 339–344, 2003. [12] P. Pant and A. Chatterjee, “Efficient Diagnosis of Path Delay Faults in Digital Logic Circuits,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 471– 475, Nov. 1999. [13] P. Pant, Y.-C. Hsu, S. K. Gupta, and A. Chatterjee, “Path Delay Fault Diagnosis in Combinational Circuits With Implicit Fault Enumeration,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1226–1335, Oct. 2001. [14] R. C. Tekumalla, S. Venkataraman, and J. G. Dastidar, “On Diagnosing Path Delay Fault in an At-Speed Environment,” Proceedings of IEEE VLSI Test Symposium, pp. 28–33, Apr. 2001. [15] S. Padmanaban and S. Tragoudas, “An Implicit Path-Delay Fault Diagnosis Methodology,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1399– 1408, Oct. 2003. [16] ——, “An adaptive path delay fault diagnosis methodology,” Proceedings of International Symposium on Quality Electronic Design, pp. 491–496, 2004. [17] M. Sivaraman and A. J. Strojwas, “Path delay fault diagnosis and coverage-a metric and an estimation technique,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 440–457, Mar. 2001. 105 [18] ——, “Diagnosis of parametric path delay faults,” Proceedings of International Conference on VLSI Design, pp. 412–417, 1995. [19] ——, “Diagnosis of path delay faults,” Proceedings of the Midwest Symposium on Circuits and Systems, pp. 769–772, 1996. [20] Y.-C. Hsu and S. K. Gupta, “A New Path-Oriented Effect-Cause Methodology to Diagnose Delay Failures,” Proceedings of IEEE International Test Conference, pp. 758–767, Oct. 1998. [21] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for intra-die process variation with spatial correlations,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, 2003. [22] H. Chang and S. Sapatnekar, “Statistical timing analysis considering spatial correlations using a single pert-like traversal,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, Nov. 2003. [23] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C.-P. Chen, “Correlation-preserved non- Gaussian statistical timing analysis with quadratic timing model,” Proceedings of Design Automation Conference, June 2005. [24] Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma, “Correlation-aware statistical timing analysis with non-Gaussian delay distributions,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, Nov. 2005. [25] Bhardwaj, P. Ghanta, and S. Vrudhula, “A framework for statistical timing analysis using non-linear delay and slew models,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, Nov. 2006. [26] S. W. Director and G. D. Hachtel, “The simplicial approximation approach to design centering,” IEEE Transactions on Circuits and Systems, vol. 24, no. 7, pp. 363–372, July 1977. [27] K. K. Low and S. W. Director, “A new methodology for the design centering of IC fabrication processes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 7, pp. 895–903, July 1991. 106 [28] G. S. Samudra, H. M. Chen, D. S. H. Chan, and Y. Ibrahim, “Yield optimization by design centering and worst-case distance analysis,” Proceedings of IEEE International Conference on Computer Design, 1999. [29] O. Neiroukh and X. Song, “Improving the process-variation tolerance of digital circuits using gate sizing and statistical techniques,” Proceedings of Design, Automation and Test in Europe, Apr. 2005. [30] S. H. Kulkarni, D. Sylvester, and D. Blaauw, “A statistical framework for post-silicon tuning through body bias clustering,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, Nov. 2006. [31] M. Mani, A. K. Singh, and M. Orshansky, “Joint design-time and post-silicon minimization of parametric yield loss using adjustable robust optimization,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, Nov. 2006. [32] D. Boning, T. Maung, J. Chung, K.-J. Chang, S.-Y. Oh, and D. Bartelink, “Statistical metrology of interlevel dielectric thickness variation,” SPIE Symposium on Microelectronic Manufacturing, 1994. [33] C. Yu, T. Maung, C. Spanos, D. Boning, J. Chung, H. Y. Liu, K. J. Cheng, and D. Bartelink, “Use of Short-Loop Electrical Measurements for Yield Improvement,” IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 2, May 1995. [34] S. Y. Oh, W. Y. Jung, J. T. Kong, and K. H. Lee, “Interconnect Modeling in Deep Submicron Design,” IEEE International Conference on VLSI and CAD, 1999. [35] J. Lee, K. Lee, J. K. Park, J. B. Lee, Y. K. Park, J. T. Kong, O. Y. Jung, and S. Y. Oh, “An indirect extraction of interconnect technology parameters for efficient statistical interconnect modeling and its applications,” IEEE International Workshop on Statistical Metrology, 2000. [36] N. D. Arora and L. Song, “Atto-Farad Measurement and Modeling of On-Chip Coupling Capacitance,” IEEE Electron Device Letters, vol. 25, no. 2, Feb. 2004. [37] A. C. Diebold, Handbook of Silicon Semiconductor Metrology. New York, NY: CRC, 2001. 107 [38] Z. Lin, C. J. Spanos, L. S. Milor, and Y. T. Lin, “Circuit sensitivity to interconnect variation,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 4, pp. 557–568, Nov. 1998. [39] N. Abaskjaroun and G. W. Roberts, “Circuits for on-chip sub-nanosecond signal capture and characterization,” Proceedings of Custom Integrated Circuits Conference, 2003. [40] P. yang Yan, Q.-D. Qian, and J. C. Langston, “Effect of lens aberration on obliqueillumination stepper system,” Proceedings of SPIE, pp. 167–180, Aug. 1993. [41] T. Brunner, “Impact of lens aberrations on optical lithography,” IBM Journal of Research and Development, pp. 57–67, 1997. [42] R. T. Schmidt, C. A. Spence, L. Capodieci, Z. Krivokapic, B. Geh, and D. G. Flagello, “Impact of coma on CD control for multiphase PSM designs,” Proceedings of SPIE, pp. 15–24, June 1998. [43] S. P. Renwick, “Flare and its effects on imaging,” Proceedings of SPIE, pp. 442–450, May 2004. [44] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits. Boston, MA: Kluwer Academic Publishers, 1998. [45] B. Chess and T. Larrabee, “Creating small fault dictionaries,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 3, pp. 346–356, Mar. 1999. [46] I. Pomeranz and S. M. Reddy, “On the generation of small dictionaries for fault location,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, 1992. [47] W. M. Lee, M. Paniccia, T. Eiles, and V. Rao, “Laser voltage probe (LVP): a novel optical probing technology for flip-chip packaged microprocessors,” Proc. IPFA, 1999. [48] C. Burmer, R. Guo, W.-T. Cheng, X. Lin, and B. Benware, “Timing failure debug using debug-friendly scan patterns and tre,” International Symposium for Testing and Failure Analysis, Nov. 2008. 108 [49] J. C. Tsang, J. A. Kash, and D. P. Vallett, “Time-resolved optical characterization of electrical activity in integrated circuits”,” Proceedings of IEEE International Test Conference, 2000. [50] K. Nikawa and S. Tozaki, “Novel obic observation method for detecting defects in a1 stripes uder current stressing,” International Symposium for Testing and Failure Analysis, 1993. [51] V. Mehrotra, “Modeling the effects of systematic variation on circuit performance,” Ph.D. dissertation, Dept. EECS, Massachusetts Institute of Technology, 2001. [52] R. Chang, Y. Cao, and C. J. Spanos, “Modeling the electrical effects of metal dishing due to cmp for on-chip interconnect optimization,” IEEE Transactions on Electron Devices, vol. 51, no. 10, Oct. 2004. [53] K. Agarwal and S. Nassif, “Characterizing process variation in nanometer cmos,” Proceedings of Design Automation Conference, pp. 396–399, June 2007. [54] B. Zhou and A. Khouas, “Measurement of delay mismatch due to process variations by means of modified ring oscillators,” Proceedings of International Symposium on Circuits and Systems, pp. 5246–5248, May 2005. [55] A. Bassi, A. Veggetti, L. Croce, and A. Bogliolo, “Measuring the effects of process variations on circuit performance by means of digitally-controllable ring oscillators,” International Conference on Microelectronic Test Structures, pp. 214–217, Mar. 2003. [56] M. Nourani and A. Redhakrishnan, “Modeling and testing process variation in nanometer cmos,” Proceedings of IEEE International Test Conference, 2006. [57] D. Boning, T. Maung, J. Chung, K.-J. Chang, and S.-Y. O. an D. Bartelink, “Statistical metrology of interlevel dielectric thickness variation,” Proceedings of SPIE, 1994. [58] D. Boning and J. Chung, “Statistical metrology: understanding spatial variation in semiconductor manufacturing,” Proceedings of SPIE, 1996. [59] B. Stine, V. Mehrotra, D. Boning, J. Chung, and D. Ciplickas, “A simulation methodology for accessing the impact of spatial/pattern dependent interconnect parameter variation on circuit performance,” International Electron Devices Meeting, 1997. 109 [60] V. Mehrotra, S. L. Sam, D. Boning, A. Chandrakasan, R. Vallishayee, and S. Nassif, “A methodology for modeling the effect of systematic within-die interconnect and device variation on circuit performance,” 2000. [61] D. Appello, A. Fudoli, K. Giarda, E. Gizdarski, B. Mathew, and V. Tancorre, “Yield analysis of logic circuits,” Proceedings of IEEE VLSI Test Symposium, 2004. [62] L.-C. Wang, P. Bastani, and M. S. Abadir, “Design-silicon timing correlation-a data mining perspective,” Proceedings of Design Automation Conference, pp. 384–389, June 2007. [63] P. Bastani, N. Callegari, L.-C.Wang, and M. S. Abadir, “An improved feature ranking method for diagnosis of systematic timing uncertainty,” IEEE International Symposium on VLSI Design, Automation and Test, pp. 101–104, Apr. 2008. [64] ——, “Diagnosis of design-silicon timing mismatch with feature encoding and importance ranking – the methodology explained,” Proceedings of IEEE International Test Conference, pp. 1–10, 2008. [65] M. Sharma, B. Benware, L. Ling, D. Abercrombie, L. Lee, M. Keim, H. Tnag, W.-T. Cheng, T.-P. Tai, Y.-J. Change, R. Lin, and A. Man, “Efficiently performing yield enhancements by identifying dominant physical root cause from test fail data,” Proceedings of IEEE International Test Conference, 2008. [66] D. Dumas, P. Girard, C. Landrault, and S. Pravossoudovitch, “Effectiveness of a variable sampling time strategy for delay fault diagnosis,” Proceedings of European Design and Test conference, pp. 518–523, Mar. 1994. [67] W. Mao and M. D. Ciletti, “A variable observation time method for testing delay faults,” Proceedings of Design Automation Conference, pp. 728–731, June 1990. [68] R. Tayade and J. A. Abraham, “On-chip programmable capture for accurate path delay test and characterization,” Proceedings of IEEE International Test Conference, pp. 1–10, Oct. 2008. 110 [69] H.-J. Hsu, C.-C. Tu, and S.-Y. Huang, “Built-in speed grading with a process tolerant adpll,” Proceedings of IEEE Asian Test Symposium, pp. 384–392, Oct. 2007. [70] Y. Y. Chen, M. P. Kuo, and J. J. Liou, “Diagnosis framework for locating failed segments of path delay faults,” Proceedings of IEEE International Test Conference, pp. 387–394, Nov. 2005. [71] W. K. Lam, A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Delay fault coverage and performance tradeoffs,” Proceedings of Design Automation Conference, pp. 446–452, June 1993. [72] K. T. Cheng and H. C. Chen, “Delay testing for nonrobust untestable circuits,” Proceedings of IEEE International Test Conference, pp. 954–961, Apr. 1993. [73] U. Sparmann, D. Luxenburger, K. T. Cheng, and S. Reddy, “Fast identification of robust dependent path delay faults,” Proceedings of Design Automation Conference, pp. 119–125, June 1995. [74] J. J. Liou, K. T. Cheng, and D. A. Mukherjee, “Path Selection for Delay Testing of Deep Sub- Micron Devices Using Statistical Performance Sensitivity Analysis,” Proceedings of IEEE VLSI Test Symposium, pp. 97–104, Apr. 2000. [75] P. Notebaert, “Linear programming solver,” http://groups.yahoo.com/group/lpsolve, 2003. [76] J. J. Liou, A. Krstic, L. C.Wang, and K. T. Cheng, “False-path-aware statistical timing analysis and efficient path selection for delay testing and timing validation,” Proceedings of Design Automation Conference, pp. 566–569, June 2002. [77] J. J. Liou, A. Krstic, K. T. Cheng, D. Mukherjee, and S. Kundu, “Performance sensitivity analysis using statistical methods and its applications to delay testing,” Proceedings of Asia & South Pacific Design Automation Conference, pp. 587–592, Jan. 2000. [78] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and R. Panda, “Statistical delay computation considering spatial correlations,” Proceedings of Asia & South Pacific Design Automation Conference, 2003. 111 [79] Q. Liu and S. S. Sapatnekar, “Confidence scalable post-silicon statistical delay prediction under process variations,” Proceedings of Design Automation Conference, pp. 497–502, June 2007. [80] P. Camurati, A. Lioy, P. Prinetto, and M. S. Reorda, “Diagnosis oriented test pattern generation,” Proceedings of European Design and Test conference, pp. 470–474, Mar. 1990. [81] F. Corno, P. Prinetto, M. Rebaudengo, and M. S. Reorda, “GARDA:a diagnostic ATPG for large synchronous sequential circuits,” Proceedings of European Design and Test conference, pp. 267–271, Mar. 1995. [82] P. Girard, G. Landrault, S. Pravossoudovitch, and B. Rodriguez, “A diagnostic ATPG for delay faults based on genetic algorithm,” Proceedings of IEEE International Test Conference, pp. 286–293, Oct. 1996. [83] R. C. Tekumalla, “On test set generation for efficient path delay fault diagnosis,” Proceedings of IEEE VLSI Test Symposium, pp. 343–348, May 2000. [84] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd. The MIT Press, 2001. [85] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits. Boston: Kluwer Academic Publishers, 1999. [86] M. Sharma and J. H. Patel, “Bounding Circuit Delay by Testing a Very Small Subset of Paths,” Proceedings of IEEE VLSI Test Symposium, pp. 333–341, Apr. 2000. [87] T. Sergios and K. Koutroumbas, Pattern recognition, 2nd ed. San Diego: Academic Press, 2003. [88] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and R. Panda, “Statistical delay computation considering spatial correlations,” Proceedings of Asia & South Pacific Design Automation Conference, 2003. 112 [89] J. He, A.-H. Tan, C.-L. Tan, and S.-Y. Sung, “On quantitative evaluation of clustering systems,” in Information Retrieval and Clustering, W. Wu and H. Xiong, Eds. Kluwer Academic Publishers, 2002, in press. [90] C. M. Bishop, Pattern recognition and machine learning. New York: Springer, 2006. [91] Y.-W. Chang and C.-J. Lin, “Feature ranking using linear SVM,” JMLR: Workshop and Conference Proceedings, 2008. [92] B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifier,” Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152, 1992. [93] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A partical guide to support vector classification,” 2009, document available at http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf. [94] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Cancer classification using support vector machines,” Machine Learning Journal, vol. 46, pp. 389–422, Jan. 2002. [95] M.-C. Wu, “An aerial image simulator for fast critical dimension estimation of lithography process,” Master’s thesis, EE Dept., National Tsing-Hua University, Jan. 2008. [96] J. W. Goodman, Introduction to Fourier Optics. Englewood, Colo.: Roberts & Co, 2005. [97] K.-M. Chang, “Analysis of systematic variation for path delay and critical area with lithography simulation,” Master’s thesis, EE Dept., National Tsing-Hua University, Jan. 2009. [98] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001, software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
|