跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林典君
研究生(外文):Lin, Tien-Chun
論文名稱:低通影像處理對人眼視覺中隨機共振現象之影響
論文名稱(外文):Effect of Low-Pass Image Filtering to the Stochastic Resonance Phenomenon in Human Visual System
指導教授:鐘太郎
指導教授(外文):Jong, Tai-Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:隨機共振人眼視覺低通影像處理
外文關鍵詞:Stochastic ResonanceHVSLow-Pass Image FilteringMTF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
關於人眼視覺方面的文獻探討在最近已有越來越多的趨勢,而連帶的也越來越多影像處理的討論以此為研究基礎。藉由知覺心理學方面的實驗,學者們確信人眼視覺中的效應和視覺影像的品質是息息相關的,因此探討人眼視覺中關於雜訊影像所引發的效應成為了一個重要的議題。
近年來一個針對雜訊方面的訊號處理的方式漸漸受到注意,那便是隨機共振。這個訊號處理演算法的概念在於,加了雜訊的訊號反而比沒加上雜訊的訊號更為容易被辨識出原訊號。而這樣的現象在生理訊號處理以及影像相關領域中已有不少相關的探討。此外人眼視覺的隨機共振效應也經由相關的知覺心理學實驗得到證實,並且衍生相關的研究。
對於影像去雜訊以及壓縮相關技術而言,低通影像處理占了非常重要的地位。甚至一些影像品質評估的演算法也是基於此開發而成的。加了雜訊後的影像經過低通影像處理後所產生的動態影像,經過人眼視覺測試後其隨機共振的效應會有甚麼樣的變化是本論文主要探討課題,文中將會藉由使用和客觀的靜態影像品質分析的對照做一個分析討論。

Recently, research about human visual perception has increased noticeably and it serves as the basis for the study of image processing. Scholars believe that the behavior in human visual perception is highly pertinent to perceptual image quality, therefore influence on visual perception resulted in by distorted, noisy image is a crucial issue.
One method applying the called “Stochastic Resonance” to noised signal processing has attracted increasing attention in recent years. The concept of stochastic resonance is that noised signal will be easier to recognize than the one without noise under appropriate noise and threshold level. There are plenty of researches about effect of stochastic resonance in biological signal processing and image processing fields. Furthermore, the effect of stochastic resonance in human visual perception was verified by related psychophysical experiments and pertinent researches were revealed.
Low-pass filtering of images plays an important role in the techniques of image denoising and image compression; even some image quality evaluating measures were developed based on it. In this thesis, stochastic resonance phenomenon in human visual perception is investigated, especially, the effect of low-pass filtering on the stochastic resonance. Here a comparison between static image quality assessment and subjective human visual image quality evaluation of dynamical video, which is composed of low-pass filtered image, will be considered as an analytic vehicle to discuss the influence of low-pass filtering to the effect of stochastic resonance in human vision system.

中文摘要 i
ABSTRACT ii
誌謝 iii
ACKNOWLEDGEMENT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Previous Work 2
1.3 Thesis Organization 3
Chapter 2 Stochastic Resonance 4
2.1 Introduction of Stochastic Resonance 4
2.1.1 How to Recognize a Stochastic Resonance Phenomenon 5
2.2 Stochastic Resonance Verification by Simulation 7
Chapter 3 Discrete Wavelet Transform and Discrete Cosine Transform 14
3.1 Introduction of Wavelet Transform 14
3.1.1 Definition of Wavelet 15
3.1.2 Continuous Wavelet Transform 17
3.1.3 Discrete Wavelet Transform 18
3.1.4 Related Application of Discrete Wavelet transform 19
3.2 Introduction of Discrete Cosine Transform 22
3.2.1 Definition of DCT 22
3.2.2 DCT Application on Image Processing 24
Chapter 4 Experiment and Verification 27
4.1 Introduction of Psychophysics 27
4.1.1 Human Visual System 28
4.1.2 PSNR 29
4.1.3 SSIM 31
4.2 Introduction for Modulation Transfer Function 37
4.3 Stochastic Resonance Effect of HVS 38
4.4 Proposed HVS- Stochastic Resonance Verification Algorithm 41
4.4.1 Preparation for Experiment 41
4.4.2 Proposed Experiment Flow 44
4.5 Discussion for Experiment Results 49
Chapter 5 Conclusion 67
5.1 Conclusion 67
5.2 Future Work 69
REFERENCE 70



[1] D. W. Hertel and E. Chang, "Image Quality Standards in Automotive Vision Applications," in 2007 IEEE Intelligent Vehicles Symposium, pp. 404-409, 2007.
[2] Z. Wang, A. C. Bovik, H. R. Shiekh, and E. P. Simoncelli, "Image Quality Assessment: From Error Visibility to Structural Similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.
[3] W. Zhang and X. Dai, "A New Nonlinear Image Contrast Enhancement Method Matched to Human Visual Perception," Journal of Information & Computational Science, pp. 193-198, 2005.
[4] A. McNamara, "Visual Perception in Realistic Image Synthesis," Computer Graphics Forum, vol. 20, pp. 211-224, 2001.
[5] E. C. Larson, C. Vu, and D. M. Chandler, "Can Visual Fixation Patterns Improve Image Fidelity Assessment?," in International Conference on Image Processing, pp. 2572-2575, 2008.
[6] D. M. Chandler and S. S. Hemami, "VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images," IEEE Transactions on Image Processing, vol. 16, pp. 2284-2298, 2007.
[7] K. Seshadrinathan, R. Soundararajah, A. C. Bovik, and L. K. Cormack, "A Subjective Study to Evaluate Video Quality Assessment Algorithms," presented at the SPIE Proceedings Human Vision and Electronic Imaging, 2010.
[8] N. B. NILL, "A Visual Model Weighted Cosine Transform for Image," IEEE Transactions on Communications, vol. 33, pp. 551-557, 1985.
[9] H. R. Sheikh and A. C. Bovik, "Image Information and Visual Quality," IEEE Transactions on Image Processing vol. 15, pp. 430-444, 2006.
[10] K. Wiesenfeld and F. Moss, "Stochastic Resonance and the Benefits of Noise: From Ice Ages to Crayfish and SQUIDS," Nature, vol. 373, pp. 33-36, 1995.
[11] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, "Stochastic Resonance," The American Physical Society, vol. 70, pp. 223-287, 1998.
[12] T. Wellens, V. Shatokhin, and A. Buchleitner, "Stochastic Resonance," Reports on Progress in Physics, vol. 67, pp. 45-105, 2004.
[13] D. F. Russell, L. A. Wilkens, and F. Moss, "Use of Behavioural Stochastic Resonance by Paddle Fish for Feeding," Nature, vol. 402, pp. 291-294, 1999.
[14] F. Chapeau-Blondeau, "Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel," The American Physical Society, 1997.
[15] Z.Gingl, L. B. Kiss, and F. Moss, "Non-dynamical Stochastic Resonance: Theory and Experiments with White and Various Coloured Noises," Europhys. Lett., vol. 29, pp. 191-196, 1995.
[16] N. Hohn and A. N. Burkitt, "Modelling the Neural Response to Speech: Stochastic Resonance and Coding Vowel-like Stimuli," in IEEE EMBS Conference, 2001.
[17] E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss, "Visual Perception of Stochastic Resonance," Phys. Rev. Lett., vol. 78, pp. 1186-1189, 1997.
[18] S. Mitaim and B. Kosko, "Adaptive Stochastic Resonance in Noisy Neurons Based on Mutual Information," presented at the IEEE Transactions on Neural Networks, 2004.
[19] H. Sasaki, M. Todorokihara, T. Ishida, J. Miyachi, T. Kitamura, and R. Aoki, "Effect of Noise on the Contrast Detection Threshold in Visual Perception," Neuroscience Letters, vol. 408, pp. 94-97, 2006.
[20] K. Ghosh, S. Sarkar, and K. Bhaumik, "A Possible Mechanism of Stochastic Resonance in the Light of an Extra-Classical Receptive Field Model of Retinal Ganglion Cells," Biological Cybernetics, vol. 100, pp. 351-359, 2009.
[21] F. Moss, L. M. Ward, and W. G. Sannita, "Stochastic Resonance and Sensory Information Processing: A Tutorial and Review of Application," Clinical Neurophysiology, vol. 115, pp. 267-281, 2004.
[22] P. Hanggi, "Stochastic Resonance in Biology," Chemphyschem, vol. 3, pp. 285-290, 2002.
[23] J. Liu and Z. Lou, "Study of Noise Enhancing Sense Based on Psychophysical Method," presented at the International Conference on Natural Computation, 2007.
[24] Q. Huang, J. Liu, and H. Li, "A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors," Sensors, vol. 7, pp. 157-165, 2007.
[25] M. Turtinen, M Pietikainen, O. Silven, T. Maenpaa, and M. Niskanen, "Texture-Based Paper Characterization Using Non-Supervised Clustering," in Proceedings of the SPIE, Gatlinburg, Tennessee, pp. 350-358, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top