跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭振洪
研究生(外文):Peng, Chen-Hung
論文名稱:光學正交分頻多工系統基頻接收機之設計
論文名稱(外文):Design of a Baseband Receiver for Optical OFDM System
指導教授:黃元豪黃元豪引用關係
指導教授(外文):Huang, Yuan-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:92
中文關鍵詞:光學正交分頻多工系統
外文關鍵詞:Optical OFDMFFTHigh throughput
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於寬頻用戶的大幅增加以及網際網路多媒體服務需求的成長,刺激了大量語音(voice)、視訊(video)、數據(data)、無線(wireless)各方面的應用(Quad Play)。為了支援大量的訊號頻寬達到高品質的網路服務,都會光纖網路逐漸成為未來發展目標,光學正交分頻多工(Optical OFDM)傳輸之傳送接收器的實現就變得相當重要。在本論文中,我們設計一16路平行化運算處理之光學正交分頻多工基頻實體層接收機。基頻接收機(Baseband Receiver)包含了訊框封包偵測、載波頻率偏移之估測與補償、通道估測以及頻域等化器,並在光纖通道連接無線通道之模型下完成系統硬體之設計。由於光學正交分頻多工系統須達GS/s的需求,因此,本論文也提出並整合一高平行度之快速傅利葉轉換器(Parallel High Throughput FFT)來符合高速傳輸的目標,並以90nm UMC CMOS製程與Faraday cell library將設計之快速傅利葉轉換器以晶片的方式完成硬體實作。在經由完整測試驗證,所設計之快速傅利葉轉換器將可達到2.67GS/s的運算吞吐量。最後,將設計之高速FFT整合在系統上在16-QAM、64-QAM、以及256-QAM模擬BER結果。其中,模擬環境是以Matlab為interface主體連結C++及光纖通道VPI完成Co-simulation驗證。
In recent years, technology of communication devices is developed rapidly due to the growing demand for transmission system. In order to provide large bandwidth
for high quality services, realizing a transceiver for optical OFDM system becomes very important. In this thesis, we propose a design of the baseband receiver with a set of 16-way parallel processing for the optical OFDM system. The baseband receiver contains the frame detection, CFO estimation and compensation, channel estimation, and equalization. We complete the hardware design of the system and show the simulation results under the optical channel. Besides, this thesis proposes a fast Fourier transform(FFT)
with high parallelism based on pipeline architecture and integrate it in optical OFDM system to reach the high-throughput goal. Finally, the FFT processor is designed and implemented as a single chip using 90nm UMC CMOS technology and Faraday cell library. The chip with a set of 16-way parallel processing can achieve the throughput up to 2.67GS/s.

1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Overview of Optical Orthogonal Frequency Division Multiplexing System 3
2.1 Orthogonal Frequency Division Multiplexing . . . . . . . . . . . . . . . . 3
2.1.1 Mathematical Model of OFDM . . . . . . . . . . . . . . . . . . . 4
2.1.2 OFDM Discrete-time Modulation . . . . . . . . . . . . . . . . . . 6
2.1.3 Guard Interval And Cyclic Prefix . . . . . . . . . . . . . . . . . . 7
2.2 The Concept of Optical Modulation System . . . . . . . . . . . . . . . . 9
2.2.1 Mach-Zehnder Modulator [1] . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Optical Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Communication Fiber Channel . . . . . . . . . . . . . . . . . . . 12
2.2.4 Demodulation of Optical Receiver . . . . . . . . . . . . . . . . . . 12
2.2.5 The Model of Optical System . . . . . . . . . . . . . . . . . . . . 13
2.3 Front-end Electronic Effects . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Carrier Frequency Offset . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Sampling Clock Offset . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Transceiver Design for Optical OFDM System 17
3.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Frame Structure And Transmitter Parameter . . . . . . . . . . . . 18
3.1.2 OFDM symbol structure . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Modulation Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Frame Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Baseband Receiver Architecture Design 33
4.1 Piecewise Linear Approximation Algorithm . . . . . . . . . . . . . . . . . 33
4.2 High Throughput FFT Processor . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Introduction to Fast Fourier Transform . . . . . . . . . . . . . . . 36
4.2.2 Multi-Phase Multi-Path Delay Feedback Architecture . . . . . . . 39
4.2.3 Proposed FFT Processor Architecture for optical OFDM System . 43
4.3 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Frame Detection Circuit . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 CFO Estimation Circuit . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 CFO Compensation Circuit . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 Channel Estimation and Equalization Circuit . . . . . . . . . . . 65

5 Simulation and Experiment Result 69
5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 System Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 FFT Chip Implementaion . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Design Flow and Verification . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Chip Layout and Comparison . . . . . . . . . . . . . . . . . . . . 81

6 Conclusion 87
[1] T. Sakamoto, T. Kawanishi, and M. Izutsu, “Continuous-phase frequency-shift
keying with external modulation,” Selected Topics in Quantum Electronics, IEEE
Journal of, vol. 12, no. 4, pp. 589 –595, july-aug. 2006.
[2] W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,”
Electronics Letters, vol. 42, no. 10, pp. 587 – 589, 11 2006.
[3] S. Randel, M. Schuster, J. Lee, and F. Breyer, “Myths and truths about optical
ofdm,” in IEEE/LEOS Summer Topical Meetings, 2007 Digest of the, 23-25 2007,
pp. 1 –2.
[4] I. Djordjevic and B. Vasic, “100-gb/s transmission using orthogonal frequencydivision
multiplexing,” Photonics Technology Letters, IEEE, vol. 18, no. 15, pp.
1576 –1578, aug. 2006.
[5] A. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical
dispersion compensation,” in Optical Fiber Communication and the National
Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. Conference on, 25-29
2007, pp. 1 –3.
[6] C.-H. Lu and K.-M. Feng, “Reduction of high papr effect with fec enhanced deep
data clipping ratio in an optical ofdm system,” in Lasers and Electro-Optics Society,
2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 21-25 2007, pp. 941 –942.
[7] E. T. Weng, “Optical I/Q Up-Conversion for Direct Detection Multi-Level Format
OFDM Systems,” Master’s thesis, Institute of Electro-Optical Engineering, Nation
Chiao Tung University, Hsinchu, Taiwan.
[8] H. S. Huang, “OFDM Signal Generation for 60-GHz RoF System within 7-GHz
License-Free Band via Frequency Sextupling and Signal pre-coding,” Master’s
thesis, Institute of Electro-Optical Engineering, Nation Chiao Tung University,
Hsinchu, Taiwan.
[9] H. Y. Chen, “ A Novel OFDMA Hybrid Access Network Architecture for Future
Integrated Broadband and Wireless Services,” Master’s thesis, Display Institute,
Nation Chiao Tung University, Hsinchu, Taiwan.
[10] C.-T. Lin, Y.-M. Lin, J. Chen, S.-P. Dai, P.-C. Peng, P. T. Shih, and S. Chi,
“Generation of direct-detection optical ofdm signal for radio-over-fiber link using
frequency doubling scheme with carrier suppression,” in Optical Fiber communica-
tion/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Con-
ference on, 24-28 2008, pp. 1 –3.
[11] S. P. Tai, “A Novel Optical Direct Detection OFDM Signal Generation using Frequency
Doubling Scheme for Radio-Over-Fiber System,” Master’s thesis, Institute
of Electro-Optical Engineering, Nation Chiao Tung University, Hsinchu, Taiwan.
[12] A. Goldsmith, Wireless Communications. Cmabridge University Press, 2005.
[13] Radio transmission and reception, 3rd Generation Partnership Project (3GPP)
Std. Ts 45.005 Version 5.3.0, 2002, available:http://www.3gpp.org/ftp/Specs/htmlinfo/
45005.htm.
[14] T. Keller and L. Hanzo, “Orthogonal frequency division multiplex synchronisation
techniques for wireless local area networks,” in Personal, Indoor and Mobile Radio
Communications, 1996. PIMRC’96., Seventh IEEE International Symposium on,
vol. 3, 15-18 1996, pp. 963 –967 vol.3.
[15] F. Tufvesson, O. Edfors, and M. Faulkner, “Time and frequency synchronization
for ofdm using pn-sequence preambles,” in Vehicular Technology Conference, 1999.
VTC 1999 - Fall. IEEE VTS 50th, vol. 4, 1999, pp. 2203 –2207 vol.4.
[16] J.-J. van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson, “On channel
estimation in ofdm systems,” in Vehicular Technology Conference, 1995 IEEE 45th,
vol. 2, 25-28 1995, pp. 815 –819 vol.2.
[17] C. C. Lee, “Design of 4x4 MIMO-OFDM Down-Link Receiver for 3GPP-LTE,”
Master’s thesis, Department of Electrical Enginerring, Nation Tsing Hua University,
Hsinchu, Taiwan.
[18] S. Abdullah, H. Nam, M. McDermot, and J. Abraham, “A high throughput fft
processor with no multipliers,” in Computer Design, 2009. ICCD 2009. IEEE In-
ternational Conference on, 4-7 2009, pp. 485 –490.
[19] C. Cheng and K. Parhi, “High-throughput vlsi architecture for fft computation,”
Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 54, no. 10, pp.
863 –867, oct. 2007.
[20] H. Ishebabi, G. Ascheid, H. Meyr, O. Atak, A. Atalar, and E. Arikan, “An efficient
parallelization technique for high throughput fft-asips,” in Circuits and Systems,
2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, 0-0 2006,
p. 4 pp.
[21] L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing.
Prentice-Hall, 1975.
[22] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-gs/s fft/ifft processor for uwb applications,”
Solid-State Circuits, IEEE Journal of, vol. 40, no. 8, pp. 1726 – 1735, aug.
2005.
[23] V. Urick, J. Qiu, and F. Bucholtz, “Wide-band qam-over-fiber using phase modulation
and interferometric demodulation,” Photonics Technology Letters, IEEE,
vol. 16, no. 10, pp. 2374 –2376, oct. 2004.
[24] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-gs/s fft processor for ofdm-based
wpan applications,” Circuits and Systems II: Express Briefs, IEEE Transactions
on, vol. 57, no. 6, pp. 451 –455, june 2010.
[25] Y. Chen, Y.-C. Tsao, Y.-W. Lin, C.-H. Lin, and C.-Y. Lee, “An indexed-scaling
pipelined fft processor for ofdm-based wpan applications,” Circuits and Systems II:
Express Briefs, IEEE Transactions on, vol. 55, no. 2, pp. 146 –150, feb. 2008.
[26] J. Mathew, K. Maharatna, D. K. Pradhan, and A. P. Vinod, “Exploration of power
optimal implementation technique of 128-pt fft/ifft for wpan using pseudo-parallel
datapath structure,” in Communication systems, 2006. ICCS 2006. 10th IEEE
Singapore International Conference on, oct. 2006, pp. 1 –5.
[27] G. Yongheng, C. Wei, L. Tiejun, and W. Zongmin, “A novel 1gsps low offset comparator
for high speed adc,” in INC, IMS and IDC, 2009. NCM ’09. Fifth Inter-
national Joint Conference on, 25-27 2009, pp. 1251 –1254.
[28] WiMAX Forum Mobile System Profile, WiMAX Forum Std., Rev. 1.2.0, Sep. 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文