跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝永信
研究生(外文):Hsieh, Yung-Hsin
論文名稱:具切換式整流器前級之無位置感測永磁同步馬達驅動系統
論文名稱(外文):POSITION SENSORLESS PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE WITH SWITCH-MODE RECTIFIER FRONT-END
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Liaw, Chang-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:133
中文關鍵詞:永磁同步馬達數位信號處理器切換式整流器電流注入推挽式轉換器無位置感測控制動態控制單方向啟動高頻訊號注入延伸反電動勢隨機脈寬調變振動
外文關鍵詞:Permanent-magnet synchronous motorDSPswitch-mode rectifiercurrent-fed push-pull convertersensorless controldynamic controlunidirectional startinghigh-frequency signal injectionextended-EMFrandom PWM switchingvibration
相關次數:
  • 被引用被引用:3
  • 點閱點閱:684
  • 評分評分:
  • 下載下載:275
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在開發一以數位訊號處理器為主具不同單相切換式整流器前級及無位置感測控制方法之永磁同步馬達驅動系統。首先建構一妥善控制之標準永磁同步馬達驅動系統,以做為研究測試平台,所建驅動系統由一些量測結果驗證其良好之操控特性。
接著發展三種單相切換式整流器,含非隔離標準升壓型切換式整流器、非隔離無橋式升壓切換式整流器、及基於電流注入推挽式轉換器之隔離型升壓切換式整流器。所設計之切換式整流器先於電阻負載下確認其有效性,再將其應用為所建構永磁同步馬達驅動系統之前級,前後兩級之所有全數位化控制均以一共同數位訊號處理器實現之。永磁同步馬達配備不同切換式整流器前級之性能比較評估將以一些實測結果為之。
最後,在探究既有常用永磁同步馬達無位置感測之控制技術後,開發一基於高頻訊號注入及一應用延伸反電動勢估測之無位置感測控制機構,並比較其啟動及運轉操控特性。基本上,高頻訊號注入無位置感測方式因具有接近零速附近之轉子絕對位置,故可在轉子靜止起從事向量控制及直接啟動。至於估測之延伸反電動勢法,在低速時所估得之反電動勢值不夠大,故先以同步馬達模式啟動之。此外,為了降低所建構無位置感測永磁同步馬達驅動系統之機械振動,應用隨機脈寬調變技術使馬達之相電流頻譜散亂均勻地分佈。

This thesis presents the development of a digital signal processor (DSP) based permanent-magnet synchronous motor (PMSM) drive powered by different kinds of front-end AC/DC converters and position sensorless control methods. For being a test platform, a standard PMSM drive with properly designed control schemes is first established, and its satisfactory operating performance is verified by some measured results.
Next, three types of single-phase switch-mode rectifiers (SMRs) are developed, these include a non-isolated standard boost SMR, a non-isolated bridgeless boost SMR and an isolated boost SMR based on current-fed push-pull converter cell. After confirming the effectiveness of the designed SMRs under resistive load, they are employed to serve as the front-end of PMSM drive. All the control schemes in the SMR-fed PMSM drives are fully digitally realized in a common DSP. Some experimental results are provided to perform the comparative evaluation between the PMSM drives equipped with different types of SMRs.
Finally, having reviewed some commonly used existing position sensorless control methods of PMSM drive, two sensorless control schemes based on high-frequency signal injection and observed extended-EMF are developed. And the comparative performance evaluation is made in their starting and running characteristics. Basically, the high-frequency signal injection based sensorless method can be directly started under vector control at standstill owing to the available observed absolute rotor position around zero speed. As to the observed extended-EMF based approach, since the observed back-EMF is insufficiently large at low speed, the starting via synchronous motor mode is unavoidable. In addition, for reducing the vibration of the established position sensorless PMSM drive, the random pulse width modulation (RPWM) is applied to randomize the phase winding current spectrum distribution.

CHAPTER 1 INTRODUCTION

CHAPTER 2 ESTABLISHED OF A DSP-BASED STANDARD PERMANENT
MAGNET SYNCHRONOUS MOTOR DRIVE
2.1 Introduction
2.2 Structural Features of PMSMs
2.3 Voltage and Mechanical Equations
2.4 Brushless DC Motor Operation and Some Key Issues
of PMSM
2.5 Estimation of Equivalent Circuit Model Parameters
2.6 Established of an Experimental Standard DSP-Based
PMSM Drive
2.6.1 Digital Control Practical Considerations
and the Employed DSP
2.6.2 The Established DSP-based Standard PMSM
Drive
2.6.3 Design of Controllers
2.6.4 Mechanical Vibration Characteristics and
Reduction of PMSM Drive

CHAPTER 3 SWITCH-MODE RECTIFIERS
3.1 Introduction
3.2 Some Single-Phase SMRs
3.3 DSP-based Non-Isolated SMR
3.3.1 Standard Boost SMR
3.3.2 Bridgeless Boost SMR
3.4 Current-Fed Push-Pull Isolated Boost SMR
3.5 Controller Design of CFPP Isolated Boost SMR
3.5.1 Current Controller
3.5.2 Voltage Controller
3.5.3 Robust Voltage Error Cancellation Controller
3.6 Experimental Performance Evaluation for the PMSM
Drive with Different Front-End AC/DC Converters

CHAPTER 4 POSITION SENSORLESS CONTROL FOR PERMANENT MAGNET
SYNCHRONOUS MOTOR DRIVE
4.1 Introduction
4.2 Overview of Some Position Sensorless Control
Methods
4.3 Position Sensorless Control using High-Frequency
Signal Injection
4.4 Position Sensorless Control using Extended-EMF
Observer
4.5 Comparative Performance Evaluation of the Two
Developed Position Sensorless PMSM Drives
4.6 Performance Evaluation for the Established
Position Sensorless Controlled CFPP SMR-Fed PMSM
Drives

CHAPTER 5 CONCLUSIONS

REFERENCES
A.Permanent-Magnet Synchronous Motor Drive
Fundamentals of PMSMs
[1]D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[2]P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: Wiley John & Sons, Inc., 1997.
[3]R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001.
[4]P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New York: Wiley, John & Sons, Inc., 2002.
[5]B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[6]H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, 1999, vol. 2, pp. 840-845.
[7]A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, 2007.
[8]S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
[9]Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
Motor design
[10]D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006.
[11]P. Sergeant and A. Van den Bossche, “Segmentation of magnets to reduce losses in permanent-magnet synchronous machines,” IEEE Trans. Magn., vol. 44, no.11, pp. 4409-4412, 2008.
[12]R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
[13]N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, 2009.
[14]W. N. Fu and S. L. Ho, “A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive,” IEEE Trans. Magn., vol. 46, no. 1, pp. 127-134, 2010.
Equivalent circuit modeling and parameter estimation
[15]P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[16]S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[17]A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and D. Min, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[18]M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
B.Switching and Dynamic Control
Current control
[19]J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[20]M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[21]H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in Proc. IEE Elect. Power Appl., 2000, vol. 147, no. 6, pp. 503-512.
[22]M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[23]B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[24]A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[25]H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
[26]H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[27]F. Morel, L. S. Xuefang, J. -M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Direct torque control
[28]Y. A.-R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors- a new approach,” IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 829-838, 2007.
[29]F. Morel, J. M. Retif, L. S. Xuefang and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 501-511, 2008.
[30]Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010.
Adaptive speed control
[31]M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623.
[32]Y. A.-R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[33]M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
Neuro and fuzzy speed controls
[34]C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
[35]T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
[36]T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[37]A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
Sliding-mode and nonlinear speed controls
[38]B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308.
[39]M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[40]S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 776-780.
[41]H. Beikzadeh and H. D. Taghirad, “Nonlinear sensorless speed control of PM synchronous motor via an SDRE observer-controller combination,” in Proc. IEEE ICIEA, 2009, pp. 3570-3575.
C.Commutation Tuning Control
[42]Y. A.-R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy convers., vol. 21, no. 3, pp. 636-644, 2006.
[43]P. Niazi, H. A. Toliyat and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-Assisted SynRM for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538-1545, 2007.
[44]H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999.
[45]H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 747-756, 2002.
[46]C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051.
D.Torque Ripple Reduction
[47]J. Holtz and L. Springob, “Identification and compensation of torque ripple in high-precision permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 309-320, 1996.
[48]P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electorn., vol. 20, no. 6, pp. 1423-1431, 2005.
[49]M. N. Uddin, “An adaptive filter based torque ripple minimization of a fuzzy logic controller for speed control of a PM synchronous motor,” in Proc. IEEE IAS, 2005, vol. 2, pp. 1300-1306.
[50]D. K. Kim, K. W. Lee and B. I. Kwon, “Commutation torque ripple reduction in a position sensorless brushless DC motor drive,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1762-1768, 2006.
[51]K. Y. Nam, W. T. Lee, C. M. Lee and J. P. Hong, “Reducing torque ripple of brushless DC motor by varying input voltage,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1307-1310, 2006.
[52]K. Gulez, A. A. Adam and H. Pastaci, “Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 251-257, 2008.
[53]Y.A.-R.I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
[54]J. Beerten, J. Verveckken and J. Driesen, “Predictive direct torque control for flux and torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 404-412, 2010.
E.Vibration Suppression
[55]S. Hattori, M. Ishida and T. Hori, “Vibration suppression control method for PMSM utilizing repetitive control with auto-tuning function and Fourier transform,” in Proc. IEEE IECON, 2001, vol. 3, pp. 1673-1679.
[56]K. Kawai, T. Zanma and M. Ishida, “Simultaneous vibration suppression control of PMSM using repetitive control with Fourier series,” in Proc. IEEE ICIT, 2006, pp. 854-859.
[57]S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1335-1338, 2006.
[58]A. Shimada, T. Zanma, S. Doki and M. Ishida, “Current compensation signal in suppression control for frame vibration of PMSM by sensorless control,” in Proc. IEEE PCC, 2007, pp. 874-878.
[59]R. Islam and I. Husain, “Analytical model for predicting noise and vibration in permanent magnet synchronous motors,” in Proc. IEEE ECCE, 2009, pp. 3461-3468.
F.Loss Minimization
[60]C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000.
[61]C. Cavallaro, A. O. DiTommaso, R. Miceli, A. Raciti, G. R. Galluzzo and M. Trapanese, “Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches,” IEEE Trans. Ind. Electorn., vol. 52, no. 4, pp. 1153-1160, 2005.
[62]J. Lee, K. Nam, S. Choi and S. Kwon, “Loss-minimizing control of PMSM with the use of polynomial approximations,” IEEE Trans. power Electorn., vol. 24, no. 4, pp. 1071-1082, 2009.
G.Field-Weakening Control
[63]S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 866-871, 1990.
[64]C. Mademlis, I. Kioskeridis and N. Margaris, “Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 715-723, 2004.
[65]T. Schneider, T. Koch and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” in Proc. IEE Elect. Power Appl., 2004, vol. 151, no. 1, pp. 76-82.
[66]M. M. Swamy, T. J. Kume, A. Maemura and S. Morimoto, “Extended high-speed operation via electronic winding-change method for AC motors,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 742-752, 2006.
[67]T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
[68]G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
H. AC/DC Switch-Mode Rectifiers
[69]M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc. IEEE PEDS, 1996, vol. 2, pp. 637-643.
[70]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[71]B. Singh and S. Singh, “Single-phase power factor controller topologies for permanent magnet brushless DC motor drives,” IET Power Electron., vol. 3, no. 2, pp. 147-175, 2010.
[72]H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
[73]S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
[74]J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” in Proc. IET. Elect. Power Appl., 2007, vol. 1, no. 3, pp. 316-328.
[75]L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[76]M. Mahdavi and H. Farzanehfard, “Zero-current-transition bridgeless PFC without extra voltage and current stress,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2540-2547, 2009.
[77]E. X. Yang, Y. Jiang, G. Hua and F. C. Lee, “Isolated boost circuit for power factor correction,” in Proc. IEEE APEC, 1993, pp. 196-203.
[78]Z. Nie, M. Ferdowsi and A. Emadi, “Boost integrated push-pull rectifier with power factor correction and output voltage regulation using a new digital control,” in Proc. IEEE INTELEC, 2004, pp. 59-64.
[79]S. L. Patil and A. K. Agarwala, “Push pull boost converter with low loss switching,” in Proc. IEEE ICIT, 2008, pp. 1-6.
[80]W. Y. Choi, J. M. Kwon, H. -L. Do and B. -H. Kwon, “Single-stage half-bridge converter with high power factor,” in Proc. IET. Elect. Power Appl., 2005, vol. 152, no. 3, pp. 634-642.
[81]T. S. Kim, G. B. Koo, G. W. Moon and M. J. Youn, “A single-stage power factor correction AC/DC converter based on zero voltage switching full bridge topology with two series-connected transformers,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 89-97, 2006.
[82]P. Das, S. Li and G. Moschopoulos, “An improved AC-DC single-stage full-bridge converter with reduced DC bus viltage,” IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4882-4893, 2009.
[83]D. D. -C. Lu, H. H. -C. Iu and V. Pjevalica, “Single-stage AC/DC boost-forward converter with high power factor and regulated bus and output voltages,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2128-2132, 2009.
[84]J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 826-834, 2009.
[85]L. Sangwon and C. Sewan, “A three-phase current-fed push-pull DC-DC converter with active clamp for fuel cell applications,” in Proc. IEEE APEC, 2010, pp. 1934-1941.
I.Position Sensorless Control
Based on the derived variable or identified parameters
[86]N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[87]J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
[88]D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors-an overview and evaluation,” in Proc. IEEE Power Electron. and Appl., 2005, pp. 10.
[89]A. H. Wijenayake, J. M. Bailey, and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
[90]S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
[91]S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
Back-EMF methods
[92]D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors - an overview and evaluation,” in Proc. Elect. Mach. and Drives, 2005, pp. 1681-1688.
[93]Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
[94]S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
[95]F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[96]B. Nahid-Mobarakeh, F. Meibody-Tabar and F. -M. Sargos, “Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 485-494, 2007.
[97]O. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the transition region,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1179-1187, 2006.
Observer based methods
[98]Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[99]S. Chi, Z. Zhang and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, 2009.
[100]M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659.
[101]J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
[102]J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
[103]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
[104]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[105]J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
Intelligent methods
[106]J. Cao, B.Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE BOBIO, 2007, pp. 1900-1905.
[107]S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
Methods based on rotor magnet saliency
[108]P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995.
[109]S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998.
[110]F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[111]S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
[112]A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970.
[113]J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[114]J. M. Guerrero, M. Leetmaa, F Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[115]Y. Jeong, R. D. Lorenz, T. M. Jahns and Seung-Ki Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[116]C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in high-frequency signal injection based sensorless PM motor drives,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007.
[117]N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM nachines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp.1190-1198, 2008.
[118]Z. Zedong, L. Yongdong, X. Xiao and M. Fadel, “Mechanical sensorless control of SPMSM based on HF signal injection and Kalman filter,” in Proc. IEEE ICEMS, 2008, pp. 1385-1390.
[119]E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[120]S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless drive of permanent-magnet synchronous motors with pole saliency-new PLL method using high-frequency current component multiplied signal,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp.777-788, 2008.
[121]A. Piippo, J. Salomaki and J. Luomi, “Signal injection in sensorless PMSM drives equipped with inverter output filter,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1614-1620, 2008.
[122]L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line position error compensation method for sensorless IPM motor drives using high frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953.
[123]D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[124]G. Foo, S. Sayeef and M. F. Rahman, “Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, 2010.
J.Others
[125]F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999.
[126]“Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/ tms320f28335.
[127]N. A. Allaith and D. A. Grant, “Intelligent power modules for voltage-fed converter drives,” in Proc. IEEE CCECE, 2000, vol. 2, pp. 918- 921.
[128]“Mitsubishi semiconductor PS21265-P/AP datasheet,” http://mitsubishichip.com/
Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf.
[129]AMOTECH Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., Korea, 2005.
[130]C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
[131]Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[132]H. J. Chen, “Design and implementation of a robust sensorless permanent-magnet synchronous motor drive with intelligent non-reversible starting,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., ROC, 2008.
[133]H. Y. Huang, “A position sensorless permanent-magnet synchronous motor drive using signal injection,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., ROC, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top