|
A.Permanent-Magnet Synchronous Motor Drive Fundamentals of PMSMs [1]D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994. [2]P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: Wiley John & Sons, Inc., 1997. [3]R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001. [4]P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New York: Wiley, John & Sons, Inc., 2002. [5]B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002. [6]H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, 1999, vol. 2, pp. 840-845. [7]A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, 2007. [8]S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 101-108, 2007. [9]Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 118-124, 2007. Motor design [10]D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006. [11]P. Sergeant and A. Van den Bossche, “Segmentation of magnets to reduce losses in permanent-magnet synchronous machines,” IEEE Trans. Magn., vol. 44, no.11, pp. 4409-4412, 2008. [12]R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009. [13]N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, 2009. [14]W. N. Fu and S. L. Ho, “A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive,” IEEE Trans. Magn., vol. 46, no. 1, pp. 127-134, 2010. Equivalent circuit modeling and parameter estimation [15]P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989. [16]S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34. [17]A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and D. Min, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003. [18]M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007. B.Switching and Dynamic Control Current control [19]J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992. [20]M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [21]H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in Proc. IEE Elect. Power Appl., 2000, vol. 147, no. 6, pp. 503-512. [22]M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000. [23]B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001. [24]A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881. [25]H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002. [26]H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003. [27]F. Morel, L. S. Xuefang, J. -M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. Direct torque control [28]Y. A.-R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors- a new approach,” IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 829-838, 2007. [29]F. Morel, J. M. Retif, L. S. Xuefang and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 501-511, 2008. [30]Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010. Adaptive speed control [31]M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623. [32]Y. A.-R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006. [33]M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009. Neuro and fuzzy speed controls [34]C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004. [35]T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606. [36]T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10. [37]A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009. Sliding-mode and nonlinear speed controls [38]B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308. [39]M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141. [40]S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 776-780. [41]H. Beikzadeh and H. D. Taghirad, “Nonlinear sensorless speed control of PM synchronous motor via an SDRE observer-controller combination,” in Proc. IEEE ICIEA, 2009, pp. 3570-3575. C.Commutation Tuning Control [42]Y. A.-R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy convers., vol. 21, no. 3, pp. 636-644, 2006. [43]P. Niazi, H. A. Toliyat and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-Assisted SynRM for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538-1545, 2007. [44]H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999. [45]H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 747-756, 2002. [46]C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051. D.Torque Ripple Reduction [47]J. Holtz and L. Springob, “Identification and compensation of torque ripple in high-precision permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 309-320, 1996. [48]P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electorn., vol. 20, no. 6, pp. 1423-1431, 2005. [49]M. N. Uddin, “An adaptive filter based torque ripple minimization of a fuzzy logic controller for speed control of a PM synchronous motor,” in Proc. IEEE IAS, 2005, vol. 2, pp. 1300-1306. [50]D. K. Kim, K. W. Lee and B. I. Kwon, “Commutation torque ripple reduction in a position sensorless brushless DC motor drive,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1762-1768, 2006. [51]K. Y. Nam, W. T. Lee, C. M. Lee and J. P. Hong, “Reducing torque ripple of brushless DC motor by varying input voltage,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1307-1310, 2006. [52]K. Gulez, A. A. Adam and H. Pastaci, “Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 251-257, 2008. [53]Y.A.-R.I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008. [54]J. Beerten, J. Verveckken and J. Driesen, “Predictive direct torque control for flux and torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 404-412, 2010. E.Vibration Suppression [55]S. Hattori, M. Ishida and T. Hori, “Vibration suppression control method for PMSM utilizing repetitive control with auto-tuning function and Fourier transform,” in Proc. IEEE IECON, 2001, vol. 3, pp. 1673-1679. [56]K. Kawai, T. Zanma and M. Ishida, “Simultaneous vibration suppression control of PMSM using repetitive control with Fourier series,” in Proc. IEEE ICIT, 2006, pp. 854-859. [57]S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1335-1338, 2006. [58]A. Shimada, T. Zanma, S. Doki and M. Ishida, “Current compensation signal in suppression control for frame vibration of PMSM by sensorless control,” in Proc. IEEE PCC, 2007, pp. 874-878. [59]R. Islam and I. Husain, “Analytical model for predicting noise and vibration in permanent magnet synchronous motors,” in Proc. IEEE ECCE, 2009, pp. 3461-3468. F.Loss Minimization [60]C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000. [61]C. Cavallaro, A. O. DiTommaso, R. Miceli, A. Raciti, G. R. Galluzzo and M. Trapanese, “Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches,” IEEE Trans. Ind. Electorn., vol. 52, no. 4, pp. 1153-1160, 2005. [62]J. Lee, K. Nam, S. Choi and S. Kwon, “Loss-minimizing control of PMSM with the use of polynomial approximations,” IEEE Trans. power Electorn., vol. 24, no. 4, pp. 1071-1082, 2009. G.Field-Weakening Control [63]S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 866-871, 1990. [64]C. Mademlis, I. Kioskeridis and N. Margaris, “Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 715-723, 2004. [65]T. Schneider, T. Koch and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” in Proc. IEE Elect. Power Appl., 2004, vol. 151, no. 1, pp. 76-82. [66]M. M. Swamy, T. J. Kume, A. Maemura and S. Morimoto, “Extended high-speed operation via electronic winding-change method for AC motors,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 742-752, 2006. [67]T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445. [68]G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009. H. AC/DC Switch-Mode Rectifiers [69]M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc. IEEE PEDS, 1996, vol. 2, pp. 637-643. [70]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [71]B. Singh and S. Singh, “Single-phase power factor controller topologies for permanent magnet brushless DC motor drives,” IET Power Electron., vol. 3, no. 2, pp. 147-175, 2010. [72]H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004. [73]S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004. [74]J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” in Proc. IET. Elect. Power Appl., 2007, vol. 1, no. 3, pp. 316-328. [75]L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008. [76]M. Mahdavi and H. Farzanehfard, “Zero-current-transition bridgeless PFC without extra voltage and current stress,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2540-2547, 2009. [77]E. X. Yang, Y. Jiang, G. Hua and F. C. Lee, “Isolated boost circuit for power factor correction,” in Proc. IEEE APEC, 1993, pp. 196-203. [78]Z. Nie, M. Ferdowsi and A. Emadi, “Boost integrated push-pull rectifier with power factor correction and output voltage regulation using a new digital control,” in Proc. IEEE INTELEC, 2004, pp. 59-64. [79]S. L. Patil and A. K. Agarwala, “Push pull boost converter with low loss switching,” in Proc. IEEE ICIT, 2008, pp. 1-6. [80]W. Y. Choi, J. M. Kwon, H. -L. Do and B. -H. Kwon, “Single-stage half-bridge converter with high power factor,” in Proc. IET. Elect. Power Appl., 2005, vol. 152, no. 3, pp. 634-642. [81]T. S. Kim, G. B. Koo, G. W. Moon and M. J. Youn, “A single-stage power factor correction AC/DC converter based on zero voltage switching full bridge topology with two series-connected transformers,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 89-97, 2006. [82]P. Das, S. Li and G. Moschopoulos, “An improved AC-DC single-stage full-bridge converter with reduced DC bus viltage,” IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4882-4893, 2009. [83]D. D. -C. Lu, H. H. -C. Iu and V. Pjevalica, “Single-stage AC/DC boost-forward converter with high power factor and regulated bus and output voltages,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2128-2132, 2009. [84]J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 826-834, 2009. [85]L. Sangwon and C. Sewan, “A three-phase current-fed push-pull DC-DC converter with active clamp for fuel cell applications,” in Proc. IEEE APEC, 2010, pp. 1934-1941. I.Position Sensorless Control Based on the derived variable or identified parameters [86]N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996. [87]J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150. [88]D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors-an overview and evaluation,” in Proc. IEEE Power Electron. and Appl., 2005, pp. 10. [89]A. H. Wijenayake, J. M. Bailey, and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215. [90]S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303. [91]S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006. Back-EMF methods [92]D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors - an overview and evaluation,” in Proc. Elect. Mach. and Drives, 2005, pp. 1681-1688. [93]Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000. [94]S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002. [95]F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010. [96]B. Nahid-Mobarakeh, F. Meibody-Tabar and F. -M. Sargos, “Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 485-494, 2007. [97]O. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the transition region,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1179-1187, 2006. Observer based methods [98]Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000. [99]S. Chi, Z. Zhang and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, 2009. [100]M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659. [101]J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82. [102]J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996. [103]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479. [104]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008. [105]J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010. Intelligent methods [106]J. Cao, B.Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE BOBIO, 2007, pp. 1900-1905. [107]S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496. Methods based on rotor magnet saliency [108]P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995. [109]S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998. [110]F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002. [111]S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668. [112]A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970. [113]J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004. [114]J. M. Guerrero, M. Leetmaa, F Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005. [115]Y. Jeong, R. D. Lorenz, T. M. Jahns and Seung-Ki Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005. [116]C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in high-frequency signal injection based sensorless PM motor drives,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007. [117]N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM nachines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp.1190-1198, 2008. [118]Z. Zedong, L. Yongdong, X. Xiao and M. Fadel, “Mechanical sensorless control of SPMSM based on HF signal injection and Kalman filter,” in Proc. IEEE ICEMS, 2008, pp. 1385-1390. [119]E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989. [120]S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless drive of permanent-magnet synchronous motors with pole saliency-new PLL method using high-frequency current component multiplied signal,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp.777-788, 2008. [121]A. Piippo, J. Salomaki and J. Luomi, “Signal injection in sensorless PMSM drives equipped with inverter output filter,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1614-1620, 2008. [122]L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line position error compensation method for sensorless IPM motor drives using high frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953. [123]D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010. [124]G. Foo, S. Sayeef and M. F. Rahman, “Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, 2010. J.Others [125]F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999. [126]“Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/ tms320f28335. [127]N. A. Allaith and D. A. Grant, “Intelligent power modules for voltage-fed converter drives,” in Proc. IEEE CCECE, 2000, vol. 2, pp. 918- 921. [128]“Mitsubishi semiconductor PS21265-P/AP datasheet,” http://mitsubishichip.com/ Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf. [129]AMOTECH Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., Korea, 2005. [130]C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000. [131]Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008. [132]H. J. Chen, “Design and implementation of a robust sensorless permanent-magnet synchronous motor drive with intelligent non-reversible starting,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., ROC, 2008. [133]H. Y. Huang, “A position sensorless permanent-magnet synchronous motor drive using signal injection,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., ROC, 2009.
|