跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王政閔
研究生(外文):Wang, Cheng-Ming
論文名稱:具三相切換式整流器前級切換式磁阻馬達驅動系統之開發
論文名稱(外文):DEVELOPMENT OF SWITCHED-RELUCTANCE MOTOR DRIVE WITH THREE-PHASE SWITCH-MODE RECTIFIER FRONT-END
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Liaw, Chang-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:141
中文關鍵詞:切換式磁阻馬達切換式整流器公率因數校正軟式切換
外文關鍵詞:switched-reluctance motorswitch-mode rectifierpower factor correctionsoft-switching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:602
  • 評分評分:
  • 下載下載:275
  • 收藏至我的研究室書目清單書目收藏:1
本論文旨在建構以數位訊號處理器為主具三相升壓切換式整流器前級之切換式磁阻馬達驅動系統,並對馬達驅動系統具不同電流控制脈寬調變機構及切換式整流器架構進行實測性能比較評估。首先,在探究磁阻馬達之基本實務及關鍵技術後,建構一以修正型米勒轉換器供電之切換式磁阻馬達驅動系統。在採行斜率比較電流控制脈寬調變及磁滯比較電流控制脈寬調變下比較評估其操作特性,含電流波形、振動及速度紋波等。此外,亦觀察使用隨機切換及換相前移之馬達操控特徵。
接著,在切換整流器之開發方面,首先設計需實現一個三相單開關升壓型切換式整流器,其操作在不連續導通模式而無電流控制,可獲得提升之直流輸出電壓及良好之交流入電電力品質。接著應用零電流轉移軟式切換技術以避免主開關因硬式切換具有之缺點。另外亦提出一個三相無橋式切換式整流器以提升標準三相單開關切換式整流器之效率。最後,組立具三種三相切換式整流器前級之切換式磁阻馬達驅動系統,並以實測結果比較評估其驅動特性。

This thesis is mainly concerned with the establishment of a digital signal processor (DSP) based switched-reluctance motor (SRM) drive with three-phase boost switch-mode rectifier (SMR) front-end. And the experimental evaluation is made for different motor drive current-controlled PWM schemes and SMR schematics. First, after comprehending the basics and key issues of SRM, an experimental SRM drive equipped with modified Miller’s is established. The operating characteristics of motor drive using ramp comparison current-controlled pulse width modulated (RC-CCPWM) and hysteresis current-controlled pulse width modulated (H-CCPWM) schemes are comparatively evaluated in current, vibration and speed ripple. The features of applying random switching and commutation instant advanced shift are also observed.
Next, a three-phase single-switch (3P1SW) boost switch-mode rectifier is first designed and implemented. It is operated under discontinuous conduction mode (DCM) without current-mode control. The boostable DC output voltage with satisfactory line drawn power quality can be obtained. Then the zero-current transition (ZCT) soft- switching control is applied to avoid the hard-switching disadvantages possessed by its main switch. Moreover, a bridgeless DCM three-phase SMR is proposed to enhance the efficiency of the standard 3P1SW DCM SMR. Finally, the SRM drives powered by the designed three types of front-end SMRs are established, and their driving performances are compared experimentally.

ACKNOWLEDGEMENTS
ABSTRACT
LIST OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 INTRODCUTION
CHAPTER 2 ESTABLISHMENT OF A DSP-BASED SWITCHED-
RELUCTANCE MOTOR DRIVE
2.1 Introduction
2.2 Fundamentals of SRM
2.2.1 Structure and Operation
2.2.2 Governing Equations
2.3 Vibration and Acoustic Sources
2.4 SRM Converters
2.5 Establishment of a DSP-Based SRM Drive
2.5.1 System Configuration
2.5.2 Digital Control Environment Using
DSP TMS320F28335
2.5.3 Sensing and Interfacing Circuits
2.6 SRM Drive Using RC-CCPWM Scheme
2.7 SRM Drive Using H-CCPWM Scheme
2.8 Design of Speed Control Scheme
2.9 Commutation Advanced Shift
CHAPTER 3 THREE-PHASE SWITCH-MODE RECTIFIER FRONT-ENDS
3.1 Introduction
3.2 Overview of Three-Phase SMRs
3.3 The Established DSP-Based 3P1SW DCM SMR
3.3.1 Schematic and Operation
3.3.2 Design of Power Circuit
3.3.3 Controller Design
3.3.4 Performance Evaluation
3.4 The Established ZCT 3P1SW DCM SMR
3.4.1 Circuit Operation and Governing
Equations
3.4.2 Design of Constituted Components
3.4.3 Simulation Results
3.4.4 Experimental Results
3.5 The Established Bridgeless Three-Phase DCM
SMR
3.5.1 Circuit Operation
3.5.2 Experimental Result
CHAPTER 4 PERFORMANCE EVALUATION OF THE SRM DRIVE POWERED
BY DIFFERENT THREE-PHASE SMR FRONT-ENDS
4.1 Introduction
4.2 SRM Drive with Standard 3P1SW DCM SMR Front-
End
4.3 SRM Drive with ZCT Three-Phase DCM SMR Front-
End
4.4 SRM Drive with Bridgeless Three-Phase DCM
SMR Front- End
4.5 Comparative Performance Evaluation for the
SRM Drive with Different AC/DC Front-Ends
CHAPTER 5 CONCLUSIONS
REFERENCES
A. Switch-Reluctance Motors
[1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford, Clarendon Press, 1993.
[2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[3] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
[4] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[5] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[6] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
[7] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[8] J. Hur, G. H. Kang, J. Y. Lee, J. P. Hong and B. K. Lee, “Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive,” in Proc. IEEE IAS, 2004, vol. 1, pp. 401-408.
[9] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[10] P. C. Desai, M. Krishnamurthy, N. Schofield and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind., vol. 57, no. 2, pp. 649-659, 2010.
B. SRM Converter Circuits
[11] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appli., vol. 27, no. 6, pp. 1034-1049, 1991.
[12] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[13] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
[14] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[15] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp.355-362, 1991.
[16] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
[17] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[18] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[19] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[20] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[21] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
[22] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Appl., vol. 140, no. 5, pp. 316-322, 1993.
[23] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
[24] K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
[25] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
C. Dynamic Control
[26] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[27] V. Vujicic and S.N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[28] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[29] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[30] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[31] R. B. Inderka, M. Menne, R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
[32] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[33] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Electric. Power Appl., vol. 3, no. 5, pp. 456-460, 2009.
[34] A. N. Tiwari, P. Agarwal and S. P. Srivastava, “Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive,” IET Proc. Electron. Power Appl., vol. 4, no. 2, pp. 101-108, 2010.
[35] H. J. Brauer, M. D. Hennen and R. W. De Doncker, “Multiphase torque-sharing concepts of predictive PWM-DIT for SMR,” in Proc. PEDS, 2007, pp. 511-516.
[36] J. Weigold and M. Braun, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4346-4353, 2008.
[37] L. Ben Amor, L.-A. Dessaint and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
[38] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[39] R. Jeyabharath, P. Veena and M. Rajaram, “A novel DTC strategy of torque and flux control for switched reluctance motor drive,” in Proc. IEEE PEDS, 2006, pp. 1-5.
[40] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[41] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[42] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993. pp. 317-320.
[43] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[44] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. IEEE WCICA, 2006, vol. 1, pp. 2490-2493.
[45] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[46] M. A. A. Morsy, M. S. A. Moteleb and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
[47] C. Mademlis and I. Kiosderidis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[48] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
D. Vibration and Torque Ripple Reduction
[49] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[50] R. S. Colby, F. M. Mottier and T. J. E. Miller, “Vibration modes and acoustic noise in a four-phase switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 32, no. 2, pp. 1357-1364, 1996.
[51] R. Krishnan and P. Vijayraghavan, “State of the art: acoustic noise in switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 929-934.
[52] M. Gabsi, F. Camus, T. Loyau and J. L. Barbry, “Noise reduction of switched reluctance machine,” in Proc. IEEE IEMD, 1999, pp. 263-265.
[53] W. Cai, P. Pillay, Z. Tang and A. Omekanda, “Experimental study of vibrations in the switched reluctance motor,” in Proc. IEEE IEMD, 2001, vol. 1, pp. 576-581.
[54] T. Boukhobza, M. Gabsi and B. Grioni, “Random variation of control angles, reduction of SRM vibrations,” in Proc. IEEE IEMD, 2001, vol. 3, pp. 640-643.
[55] J. W. Ahn, S. J. Park and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 374-380, 2004.
[56] K. H. Ha, Y. K. Kim, G. H. Lee and J. P. Hong, “Vibration reduction of switched reluctance motor by experimental transfer function and response surface methodology,” IEEE Trans. Ind. Electron., vol. 40, no. 2, pp. 577-580, 2004.
[57] J. Y. Chai, Y. W. Ling and C. M. Liaw, “Comparative study of switching control in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[58] J. Li, X. Song and Y. Cho, “Comparison of 12/8 and 6/4 switched reluctance motor: noise and vibration aspects,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4131-4134, 2008.
[59] J. Li, X. G. Song, D. Choi and Y. H. Cho, “Research on reduction of vibration and acoustic noise switched reluctance motors,” in Proc. IEEE ELECTROMOTION, 2009, pp. 1-6.
[60] L. Venkatesha and V. Ramanarayanan, “A comparative study of pre-computed current methods for torque ripple minimisation in switched reluctance motor,” in Proc. IEEE IAS, 2000, pp. 119-125.
[61] J. M. Stephenson, A. Hughes and R. Mann, “Torque ripple minimization in a switched reluctance motor by optimum harmonic current injection,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 322-328, 2001.
[62] L. O. A. P. Henriques, P. J. Costa Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an offline learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
[63] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[64] N. Bhiwapurkar and N. Mohan, “Torque ripple optimization in switched reluctance motor using two-phase model and optimization search technique,” in Proc. IEEE SPEEDAM, 2006, pp. 340-345.
[65] S. K. Sahoo, S. K. Panda and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. PESC, 2007, pp. 1-7.
[66] A. C. Koenig, S. D. Pekarek and P. Lamm, “A PI-based control strategy for mitigation of torque harmonics in switched reluctance motor drives,” in Proc. IEEE APEC, 2008, pp. 363-369.
[67] P. A. Cassani, Z. Peng and S. S. Williamson, “A novel voltage-profiling method to minimize torque ripples in SRM based vehicle propulsion systems,” in Proc. IEEE IECON, 2008, pp. 1089-1094.
[68] T. H. Kim, D. H. Lee and J. W. Ahn, “Advanced non-linear logic torque sharing function of SRM for torque ripple reduction,” in Proc. INTELEC. 2009, pp. 1-4.
[69] J. Y. Chai and C. M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IET Proc. Elect. Power Appl., vol. 4, no. 5, pp. 380-396, 2010.
E. Three-Phase Switch-Mode Rectifiers
[70] M. Hengchun, F. C. Lee, D. Boroyevich and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[71] J. Shah and G. Moschopoulos, “Three-phase rectifiers with power factor correction,” in Proc. IEEE CCECE, 2005, pp. 1270-1273.
[72] J. Hahn, P. N. Enjeti and I. J. Pitel, “A new three-phase power factor correction (PFC) scheme using two single-phase PFC modules,” IEEE Trans. Ind. Appl., vol. 38, no. 1, pp. 123-130, 2002.
[73] D. O. Neacsu, Y. Ziwen and V. Rajagopalan, “Optimal PWM control for single-switch three-phase AC-DC boost converter,” in Proc. IEEE PESC, 1996, vol. 1, pp. 727-732.
[74] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE PESC, 1997, vol. 2, pp. 895-901.
[75] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[76] E. H. Ismail and R. Erickson, “Single-switch PWM low harmonic rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 338-346, 1996.
[77] S. M. Bashi, N. Mariun, S. B. Noor and H. S. Athab, “Three-phase single switch power factor correction circuit with harmonic reduction,” Journal of Applied Sciences, pp. 80-84, 2005.
[78] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC, 1993, pp. 944-950.
[79] K. Cai and Z. Xu, “A novel control method of three-phase single-switch boost power factor corrector under variable switching frequency,” in Proc. IEEE ICPST., 2002, vol. 1, pp. 565-569.
[80] A. Borisavljevic, M. R. Iravani and S.B. Dewan, “Modeling and analysis of a digitally controlled high power switch-mode rectifier,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 378-394, 2005.
[81] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[82] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifier,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[83] P. Kong, S. Wang and F. C. Lee, “Common mode EMI noise suppression for bridgeless PFC converters,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 291-297, 2008.
[84] M. M. Reis, B. Soares, L. Barreto, E. Freitas, C. E. A. Silva, R. T. Bascope and D. S. Olivera, “A variable speed wind enegy conversion system connected to the grid for small wind generator,” in Proc. IEEE APEC, 2008, pp. 751-755.
[85] D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
F. Soft Switching
[86] H. Bodur and A. F. Bakan, “A new ZVT-PWM DC-DC converter,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 40-47, 2002.
[87] P. Chen, Bhat and A. K. S, “A soft-switched AC-to-DC converter operating in DCM : analysis, design, simulation and experimental results,” in Proc. IEEE APEC, 2004, vol. 2, pp. 730-736.
[88] H. Guichao, E. X. Yang, Y.M. Jiang and F. C. Lee, “ Novel zero-current-transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 6, pp. 601-606, 1994.
[89] P. Das and G. Moschopoulos, “A comparative study of zero-current-transition,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1319-1328, 2007.
[90] J. Yungtaek and M. M. Jovanovic, “A new, soft-switched, high-power-factor boost converter with IGBTs,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 469-476, 2002.
[91] K. Wang, F. C. Lee and Boroyevich, “Soft-switched single-switch three-phase rectifier with power factor correction,” in Proc. IEEE APEC, 1994, vol. 2, pp. 738-744.
[92] A. Ueda, Y. Ito,Y. Kurimoto and A. Torii, “Boost type three-phase diode rectifier using current resonant switch,” in Proc. IEEE PCC, 2002, vol. 1, pp. 13-18.
G. SMR-Fed SRM Drive System
[93] R. Krishnan, “A novel converter topology for switched reluctance motor drives,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1811-1816.
[94] K. Tsuno, T. Shimizu, K. Wada and K. Ishii, “Optimization of the DC ripple energy compensating circuit on a single-phase voltage source PWM rectifier,” in Proc. IEEE PESC, 2004, vol. 1, pp. 316-321.
[95] D. Gerling and A. Schramm, “Optimization alternatives of mechatronic systems containing switched reluctance drives,” in Proc. IEEE/ASME AIM, 2005, pp. 916-921.
[96] J. H. Choi, J. S. Ahn and J. Lee, “The finite element analysis of switched reluctance motor considering asymmetric bridge converter and DC link voltage ripple,” IEEE Trans. Magn., vol. 41, no 5, pp. 1640-1643, 2005.
[97] R. Krishnan and S. Lee, “Effect of power factor correction circuit on switched reluctance motor drives for appliances,” in Proc. IEEE APEC, 1994, vol. 1, pp. 83-89.
[98] J. Reinert and S. Schroder, “Power-factor correction for switched reluctance drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 54-57, 2002.
[99] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
H. Others
[100] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[101] J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor front-end, PH. D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2008.
[102] “Digital signal controller TMS320F28335 datasheet,” http://www.ti.com/lit/gpn/ tms320f28335
[103] “Toroida core MICROMETALS T130-2 datasheet,” http://www.micrometals.com/

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top