跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾聖然
研究生(外文):Tseng, Sheng-Jan
論文名稱:考量電力系統電壓不平衡與驟降時靜態同步補償器之雛形設計與實作
論文名稱(外文):Design and Implementations of STATCOM Prototypes with Considering Unbalanced Voltage Sags in Power Systems
指導教授:朱家齊朱家齊引用關係
指導教授(外文):Chu, Chia-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:電壓驟降電壓不平衡電力品質靜態同步補償器同步旋轉座標理論內外雙迴圈之解耦閉迴路控制實驗室雛型平台
外文關鍵詞:Voltage SagsUnbalanced SystemsStatic Synchronous CompensatorSynchronous Reference FrameDecoupled ControlLaboratory Platform Implementations
相關次數:
  • 被引用被引用:2
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於高科技產業之興起,自動化設備大量使用於工業界,所以電力品質的要求也越來越高,而在電力系統中常見的電壓驟降及電壓不平衡情形,通常是由劇烈變動之高功率負載或系統故障等原因所引起,往往會導致自動化設備的損壞或誤動作。靜態同步補償器具有動態響應速度快、電流諧波含量小、裝置體積小等優點,而對於電力品質問題有非常良好的改善效果。
本論文探討靜態同步補償器,在系統平衡與不平衡情況下的控制策略,以電壓源變流器為基礎,建立三相110V 1KVA之小型實驗室雛型平台,完成相關控制策略之設計,並以電磁暫態模擬器PSCAD軟體模擬與硬體實驗交互驗證,以確保控制系统的有效性。理論部分將利用同步旋轉座標,建立靜態同步補償器在旋轉座標下的正、負序之動態模型,確保於系統責任分界點發生平衡與不平衡電壓驟降、或平衡與不平衡負載切換時,負載匯流排之電壓支持策略。控制策略應用內外雙迴圈之解耦閉迴路控制架構:內迴圈完成電流命令追蹤,外迴圈完成匯流排交流電壓與電壓源變流器直流鏈電壓命令追蹤。軟體模擬與硬體實作驗證該控制架構優異之穩態與暫態性能。
關鍵詞: 電壓驟降、電壓不平衡、電力品質、靜態同步補償器、同步旋轉座標理論、內外雙迴圈之解耦閉迴路控制、實驗室雛型平台。

Due to heavily load fluctuations or unexpected faults in power systems, voltage sags and unbalanced problems are one of the important issues for power distribution systems, especially for sensitive loads such as high-tech industrial parks. In recent years, due to rapid development of high-power electronics technology, it is possible to provide such voltage supports during the very short transient period by installing Static Synchronous Compensators (STATCOMs). When either the balanced or unbalanced voltage sag occurs in the point of common connection (PCC) of the system, or loads switching in the load bus, this STATCOM will provide adequate voltage supports.
This thesis will report hardware implementations of a small laboratory-scale STATCOM. The rating of this three-phase STATCOM is 110 V, and 1 KVA. By applying the Synchronous Reference Frame (SRF) theory, the mathematical model of the STATCOM under the positive sequence and the negative sequence are described. The inner/outer two-loop decoupled control strategy is explored. The inner loop control is for the current command tracking while the outer loop control is for the bus AC voltage and the DC-link voltage control. The proposed control configuration has been validated under PSCAD simulations and hardware laboratory implementations. Experimental works on various operating conditions have been conducted to verify the effectiveness of the proposed control strategy.

Keywords: Voltage Sags, Unbalanced Systems, Static Synchronous Compensator (STATCOM), Synchronous Reference Frame (SRF), Decoupled Control, Laboratory Platform Implementations.

摘要
Abstract
誌謝
目錄
圖目錄
表目錄
符號說明
英文縮寫對照表
第一章 緒論
1.1 研究動機
1.2 相關文獻回顧
1.3 本論文主要貢獻
1.4 論文內容概述
第二章 靜態同步補償器(STATCOM)
2.1 前言
2.2 STATCOM基本原理
2.2.1 STATCOM之電路架構
2.2.2 STATCOM之工作原理
2.3 VSI參數選取
2.3.1 額定補償容量選取
2.3.2 直流側電壓選取
2.3.3 直流電容選取
2.4 靜態同步補償器實驗平台概述
2.4.1 實驗平台之系統架構
2.4.1.1 感測板之功能
2.4.1.2 保護板之功能
2.4.1.3 數位訊號處理器(DSP)
2.4.1.4 可程式化邏輯元件(CPLD)
2.4.2 IGBT Power模組與Gate driver
2.4.2.1 IGBT Power模組
2.4.2.2 IGBT Power模組設計修改
2.4.2.3 Gate Driver功能說明及線路配置
2.4.2.4 柔充( Soft-Start)電路設計
2.4.3 電壓驟降產生器(VSG)
2.4.3.1 電壓驟降產生器之分類
2.4.3.2 電壓驟降產生器製作
2.5 本章結論
第三章 STATCOM於平衡系統之應用
3.1 前言
3.1.1 空間相量定義
3.1.2 空間相量於αβ靜止框表示
3.1.3 空間相量於dq同步框表示
3.2 平衡系統
3.2.1 數學模型
3.2.2 解耦合電流控制
3.2.3 直流側動態分析
3.3 模擬與實驗結果
3.3.1 案例一:負載端電壓穩態補償實驗
3.3.2 案例二:電源端電壓驟降補償實驗
3.3.3 案例三:負載變動補償實驗
3.4 本章結論
第四章 STATCOM於不平衡系統之應用
4.1 前言
4.2 不平衡率之定義
4.3 數學模型
4.3.1 正負序分離方法
4.3.2 解耦合電流控制
4.3.3 直流側動態分析
4.4 模擬與實驗
4.4.1 案例一:線路阻抗不平衡穩態補償實驗
4.4.2 案例二:系統投入不平衡負載補償實驗
4.4.3 案例三:線路阻抗不平衡下投入不平衡負載補償實驗
4.4.4 案例四:電源端單相電壓驟降補償實驗
4.4.5 案例五:單相負載變動補償實驗
4.5 本章結論
第五章 結論與展望
參考文獻
[1]C. D. Schauder and R. Caddy, "Current control of voltage-source inverters for fast four-quadrant drive performance," IEEE Trans. on Industry Applications, vol. IA-18, pp. 163-171, 1982.
[2]C. Schauder and H. Mehta, "Vector analysis and control of advanced static VAr compensators," IEE Proceedings-C, vol. 140, pp. 299-306, 1993.
[3]I. Papic, P. Zunko, D. Povh, and M. Weinhold, "Basic control of unified power flow controller," IEEE Trans. on Power Systems, vol. 12, pp. 1734-1739, 1997.
[4]C. K. Sao, P. W. Lehn, M. R. Iravani, and J. A. Martinez, "A benchmark system for digital time-domain simulation of a pulse-width-modulated D-STATCOM," IEEE Trans. on Power Delivery, vol. 17, pp. 1113-1120, 2002.
[5]B. S. Chen and Y. Y. Hsu, "A minimal harmonic controller for a STATCOM," IEEE Trans. on Industrial Electronics, vol. 55, pp. 655-664, 2008.
[6]B. Wang and J. J. Cathey, "DSP-controlled, space-vector PWM, current source converter for STATCOM application," Electric Power Systems Research, vol. 67, pp. 123-131, 2003.
[7]L. Xu, V. G. Agelidis, and E. Acha, "Development considerations of DSP-controlled PWM VSC-based STATCOM," Proceedings of IEE on Electric Power Applications, vol. 148, pp. 449-455, 2001.
[8]B. N. Singh, B. Singh, A. Chandra, and K. Al-Haddad, "Digital implementation of an advanced static compensator for voltage profile improvement, power-factor correction and balancing of unbalanced reactive loads," Electric Power Systems Research, vol. 54, pp. 101-111, 2000.
[9]J. Eloy-Garcia and R. Alves, "DSP-based Direct Power Control of a VSC with Voltage Angle Estimation," IEEE/PES, Transmission & Distribution Conference and Exposition: Latin America, pp. 1-5, 2006.
[10]P. Wang, N. Jenkins, and M. H. J. Bollen, "Experimental investigation of voltage sag mitigation by an advanced static VAr compensator," IEEE Trans. on Power Delivery, vol. 13, pp. 1461-1467, 1998.
[11]B. Singh, R. Saha, A. Chandra, and K. Al-Haddad, "Static synchronous compensators (STATCOM): a review," IET on Power Electronics, vol. 2, pp. 297-324, 2009.
[12]C. Hochgraf and R. H. Lasseter, "Statcom controls for operation with unbalanced voltages," IEEE Trans. on Power Delivery, vol. 13, pp. 538-544, 1998.
[13]H. Song and K. Nam, "Dual current control scheme for PWM converter under unbalanced input voltage conditions," IEEE Trans. on Industrial Electronics, vol. 46, pp. 953-959, 1999.
[14]S. Dong, L. Wenhua, and W. Zhonghong, "Study on the operation performance of STATCOM under unbalanced and distorted system voltage,"IEEE Power Engineering Society Winter Meeting, pp. 2630-2635 vol.4, 2000.
[15]C. Su, G. Joos, and L. T. Moran, "Dynamic performance of PWM STATCOMs operating under unbalance and fault conditions in distribution systems,"IEEE Power Engineering Society Winter Meeting, pp. 950-955 vol.2, 2001.
[16]N. I. A. Wahab, N. Mariun, A. Mohamed, and M. Mohamad, "Response of D-STATCOM under unbalanced voltage condition caused by SLG fault," Proceedings of 2003 Student Conference on Research and Development (SCORED 2003) , pp. 395-400, 2003.
[17]G. Escobar, A. M. Stankovic, and P. Mattavelli, "An adaptive controller in stationary reference frame for D-statcom in unbalanced operation," IEEE Trans. on Industrial Electronics, vol. 51, pp. 401-409, 2004.
[18]B. Blazic and I. Papic, "Improved D-StatCom control for operation with unbalanced currents and voltages," IEEE Trans. on Power Delivery, vol. 21, pp. 225-233, 2006.
[19]X. Fu, J. Wang, and Y. Ji, "A Novel Control Method for D-STATCOM under Unbalanced Conditions," International Conference on in Power System Technology (PowerCon 2006) , pp. 1-6,2006.
[20]A. Yazdani and R. Iravani, "A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions," IEEE Trans. on Power Delivery, vol. 21, pp. 1620-1629, 2006.
[21]K. Li, J. Liu, Z. Wang, and B. Wei, "Strategies and operating point optimization of STATCOM control for voltage unbalance mitigation in three-phase three-wire systems," IEEE Trans. on Power Delivery, vol. 22, pp. 413-422, 2007.
[22]S. Hu, J. Li, and H. Xu, "Comparison of voltage sag generators for wind power system," Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009), pp. 1-4 , 2009.
[23]M. García-Gracia , M. Paz Comech, J. Sallán, D. López-Andía, and O. Alonso, "Voltage dip generator for wind energy systems up to 5 MW," Applied Energy, vol. 86, pp. 565-574, 2009.
[24]N. G. Hingorani and L. Gyugyi, Understanding FACTS, IEEE press, 2000.
[25]A. Yazdani and R. Iravani, Voltage-sourced converters in power systems , IEEE press ,2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top