|
References [1] J.C. Butcher. A history of runge-kutta methods. Applied Numerical Mathematics, 20:247260, 1996. [2] A. C. LAZER C. Cosner. Stable coexistence states in the volterra-lotka competition model with di¤usion. SIAM Journal on Applied Mathemat- ics, 44(6), 1984. [3] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univ. Pr., 1996. [4] P. Hess. Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scienti
c Technical, 1991. [5] K. Mischaikow J. Dockery, V. Hutson and M. Pernarowski. The evolu- tion of slow dispersal rates:a reaction-di¤usion model. Journal of Math- ematical Biology, 37:6183, 1998. [6] C. V. Pao L. Zhou. Asymptotic behavior of a comptition-di¤usion sys- tem in population dynamics. Nonlinear Analysis, Theory, Methods Ap- plications, 6(11), 1982. [7] R. J. LeVeque. Finite Di¤erence Methods for Ordinary and Partial Dif- ferential Equations: Steady-State and Time-Dependent Problems. SIAM Journals, 2007. [8] J. H. Mathews and K. K. Fink. Numerical Methods Using Matlab. Pear- son, 2004. [9] C. V. Pao. Global asymptotic stability of lotkaâ¼A ¸Svolterra 3-species reactionâ¼A ¸Sdi¤usion systems with time delays. Journal of Mathematical Analysis and Applications, 281:186204, 2003. [10] Y. Lou R. Hambrock. The evolution of conditional dispersal strategies in spatially heterogeneous habitats. Bulletin of Mathematical Biology, 71(8):17931817, 2009. [11] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing Company, 1996. [12] J.W. Thomas. Numerical Partial Di¤erential Equations: Finite Di¤er- ence Methods. Springer, 1998. [13] K. Mischaikow V. Hutson and P. Polacik. The evolution of dispersal rates in a heterogeneous time-periodic environment. Journal of Mathe- matical Biology, 43:501533, 2001. [14] Y. Lou X. Chen, R. Hambrock. Evolution of conditional dispersal: a reaction-di¤usion-advection model. Journal of Mathematical Biology, 57(3):86361, 2008.
|