跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建智
研究生(外文):Huang, Chien-Chih
論文名稱:渾沌密碼與時空擾動之渾沌密碼流
論文名稱(外文):Chaos Based Cryptography and Spatial-Temporal Chaotic System Stream Cipher
指導教授:林文偉林文偉引用關係
指導教授(外文):Lin, Wen-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:109
中文關鍵詞:渾沌密碼學密碼流偽隨機生成器時空擾動渾沌系統數位化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:431
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本文中,我們提出三種方法來建構渾沌密碼系統,第一個是時空擾動法(spatial-temporal perturbation method),
第二個是延長斜logistic映射(extend-skew logistic map),
第三個是結合時空擾動法與延長斜logistic映射的特性及高效能輸出策略來建構的渾沌密碼流。

時空擾動法是時間擾動法(temporal perturbation method)的一種推廣。時間擾動法是利用一維渾沌映射的延遲變量所組合成的偽隨機數,
用來擾動渾沌映射本身,並改善渾沌映射在有限計算精度的數位電腦上實現所產生的動態退化的問題。
由於延遲變量是渾沌映射自身產生不需額外計算而且其偽隨機數的更新(update),只需做位元平移運算,
因此時間擾動法只需增加一些暫存器(registers),來儲存本身所產生的偽隨機數,雖只增加了位元平移與xor兩種運算,
但所改善的效果卻相當驚人,可使渾沌映射的週期和狀態使用率大幅增加,因此時間擾動法是個快速、成本低且有效的方法。
我們將時間擾動法運用在logistic 映射上,形成偽隨機數生成器TPLogist($m,l,q$),其中$m$為計算精度,$l$為延遲因子長度,
而$q$為輸出的位元數,TPLogist($m,l,q$)不僅通過了美國國家標準局(NIST) SP800-22和TestU01兩種統計測試軟體,
而且也實作了硬體晶片來驗証其有相當好的效能;另外,時空擾動法是為了將多個渾沌映射結合成一個渾沌系統所產生的一種方法,
此方法是將每一個渾沌映射所產生的偽隨機數來擾動其鄰近的渾沌映射,它不僅繼承了時間擾動法的快速、成本低、高效能等特性,
還能增強渾沌映射之間的關連性並提供簡單快速的擴充性,可提供較大的參數空間來增強之後建構密碼系統的安全性。

由於目前常用於渾沌密碼的渾沌映射是帳篷映射(tent map)、分段線性渾沌映射(piecewise linear chaotic map)和logistic 映射,
而前兩者是類線性的,較容易被分析出它的參數而影響渾沌密碼的安全性,而後者雖然是非線性的,但它的分佈是非均勻的,
且參數有渾沌空窗(chaotic windows)的現象,這容易造成在應用於渾沌密碼的安全性與效能降低,
因此我們提出一個新的渾沌映射-延長斜logistic映射,不僅可提升渾沌密碼的安全性,並且有較高的效能,
因為延長斜logistic 映射有非線性、均勻分佈、兩個控制參數、高複雜性和不易被分析等特性,因此非常適合運用在渾沌密碼。

一般來說,密碼系統的安全性與效能是難以兼顧的。因為若要有較高的安全性,勢必要有更多、更複雜的計算來達成,但其效能就會下降;
相反的,如要提升效能,其安全性就會降低,或者是需要增加硬體成本。因此如何在安全性、效能與成本間取得平衡,
即為渾沌密碼系統是否能真正應用於現實社會的一個重要課題。而最後我們結合時空擾動法和延長斜logistic映射的特性,
並提出一個兼顧安全性與效能輸出策略,來建構一個速度快、安全性高且硬體、成本低的渾沌密碼,並提出一些對渾沌密碼系統的未來展望,
它能實際應用於網路通訊、無線通訊和軍事保密上。

目錄
1 緒論 4
1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 研究內容與成果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 論文組織結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2渾沌密碼
2.1 密碼學 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 渾沌動態系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3渾沌動態系統與密碼學的結合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 建構渾沌密碼應有的考量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 15

3基於時間擾動的偽隨機生成器
3.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2渾沌動力退化問題 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3時間擾動法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 結構與實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 週期分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 統計測試. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.4 硬體實現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 數位時空擾動渾沌系統
4.1 .前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 46
4.2 理論架構 . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 數值模擬與統計測試 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1週期分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 隨機性. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 53
4.4結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 延長斜Logistic映射(Extend-Skew Logistic Map) 56
5.理論架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 56
5.2 數值模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 均勻分佈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 分岐圖(bifurcation diagram) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 頻譜分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.4 Lyapunov 指數. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 67
5.3結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 73

6 時空擾動渾沌密碼流系統

7結論與展望
7.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 .未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A The 17 suggested rules for chaos based cryptography 85
B Logistic映射在不同的計算精度下的所有週期統計 88
C NIST SP800-22 test suite 96
D TestU01 103

References
[1] T. Addabbo, M. Alioto, A. Fort, A. Pasini, S. Rocchi, and V. Vignoli. A class of maximum-period nonlinear congruential generators derived from the Rnyi chaotic map. IEEE Transactions on Circuits and Systems - I, 54(4):816-828, April 2007.

[2] E. 'Alvarez, A. Fernandez, P. Garc, J. Jimenez, and A. Marcano. New approach to chaotic encryption. Phys. Lett. A, 263:373-375, 1999.

[3] G. 'Alvarez and S. Li. Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 16(8):2129-2151, August 2006.

[4] M.S. Baptista. Cryptography with chaos. Physics Letters A, 240(1-2):50-54, 1998.

[5] P. Bergamo, P. DArco, A. D. Santis, and L. Kocarev. Security of public-key cryptosystems based on chebyshev polynomials. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSXI: REGULAR PAPERS, 52(7):1382-1393, JULY 2005.

[6] G. M. Berstein and M. A. Lieberman. Method and apparatus for generating secure random numbers using chaos. US Paten, page 5007087, 1991.

[7] R. Bose. Novel public key encryption technique based on multiple chaotic systems. PHYSICAL REVIEW LETTERS, 26:098702-1 098702-4, AUGUST 2005.

[8] J Cernak. Digital generators of chaos. Physics Letters A, 214(3-4):151-160, May 1996.

[9] W. Di_e and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-22(2):644-654, Nov. 1976.

[10] D. R. Frey. Chaotic digital encoding: An approach to secure communication. IEEE Trans. Circuits Syst.-II, 40:660-666, 1993.

[11] J. Fridrich. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurcation and Chaos, 8:1259-1284, 1998.

[12] J.P. Goedgebuer, L Larger, and H Porte. Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode. Physical Review Letters, 80(10):2249-2252, May 1998.

[13] JA Gonzalez and R Pino. A random number generator based on unpredictable chaotic functions. Computer Physics Communications, 120(2-3):109-114, August 1999.

[14] D. Guo, L. M. Cheng, and L. L. Cheng. A new symmetric probabilistic encryption scheme based on chaotic attractors of neural networks. Appl. Intell., 10:71-84, 1999.

[15] T. Habutsu, Y. Nishio, I. Sasase, and S. Mori. A secret key cryptosystem by iterating a chaotic map. in Advances in Cryptology X EUROCRYPT91, Lecture Notes in Computer Science, 547:127-140, 1991.

[16] F. Huang and Z.-H. Guan. Cryptosystem using chaotic keys. Chaos Solit. Fract., 23:851-855, 2005.

[17] G. Jakimoski and L. Kocarev. Chaos and cryptography: Block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst.-I, 48:163-169, 2001.

[18] C. Juang, C.C. Huang, T.M. Hwang, J. Juang, and W.W. Lin. Optoelectronic delayed-feedback and chaos in quantum-well laser diodes. Optics Communications, 192(1-2):77-81, May 2001.

[19] L. Kocarev, G. Jakimoski, T. Stojanovski, and U. Parlitz. From chaotic maps to encryption schemes. in Proc. IEEE Int. Symp. Circuits and Systems(ISCAS98), 4:514-517, 1998.

[20] L. Kocarev and Z. Tasev. Public-key encryption based on chebyshev maps. In Proc IEEE Symp Circ Syst (ISCAS'03), volume 3, page 28V31, 2003.

[21] L. Kocareva, M. Sterjevb, A. Feketec, and G. Vattayd. Public-key encryption with chaos. CHAOS, 14(4):1078-1082, DECEMBER 2004.

[22] H. Lu, S.Wang, X. Li, G. Tang, J. Kuang, W. Ye, and G. Hu. A new spatiotemporally chaotic cryptosystem and its security and performance analyses. Chaos, 14:617-629, 2004.

[23] P. L'Ecuyer and R. Simard. Testu01:a c library for empirical testing of random number generators. ACM Transactions on Mathematical Software, 33(4):1-40, 2007.

[24] S.-C. Lee, P.-H.and Pei and Y.-Y. Chen. Generating chaotic stream ciphers using chaotic systems. Chinese J. Phys., 41:559-581, 2003.

[25] C.Y. Li, J.S. Chen, and T.Y. Chang. A chaos-based pseudo random number generator using timeing-based reseeding method. In IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006, Proceedings, pages 21-24, 2006.

[26] P Li, Z Li, WA Halang, and et al. A multiple pseudorandom-bit generator based on a spatiotemporal chaotic map. Physics Letters A, 349(6):467-473, January 2006.

[27] S. Li, G. Chen, and X. Mou. On the dynamical degradation of digital piecewise linear chaotic maps. International Journal of Bifurcation and Chaos, 15(10):3119- 3151, October 2005.

[28] S. Li, K.-W. Chen, G.and Wong, X. Mou, and Y. Cai. Baptista-type chaotic cryptosystems: Problems and countermeasures. Phys. Lett. A, 332:368-375, 2004.

[29] S. Li, X. Mou, and Y. Cai. Pseudo-random bit generator based on couple chaotic systems and its application in stream-ciphers cryptography. In Progress in Cryptology - INDOCRYPT 2001, Lecture Notes in Computer Science vol. 2247, pages 316-329. Springer-Verlag, Dec. 2001.

[30] X. Li, S.and Mou and Y. Cai. Pseudo-random bit generator based on couple chaotic systems and its application in stream-ciphers cryptography. in Progress in Cryptology X INDOCRYPT 2001, Lecture Notes in Computer Science, 2247:316-329, 2001.

[31] N. Masuda and K. Aihara. Cryptosystems with discretized chaotic maps. IEEE Trans. Circuits Syst.-I, 49, 2002.

[32] R. Matthews. On the derivation of a “chaotic” encryption algorithm. Cryptologia, XIII(1):29-42, 1989.

[33] S. Papadimitriou, T. Bountis, S. Mavaroudi, and A. Bezerianos. A probabilistic symmetric encryption scheme for very fast secure communications based on chaotic systems of difference equations. Int. J. Bifurcation and Chaos, 11:3107-3115, 2001.

[34] M. Rabin. Digitalized signatures and public-key functions as intractable as factorization. MIT Laboratory for Computer Science, January 1979.

[35] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

[36] F. Robert. Discrete Iterations: A Mectric Study, volume 6 of Spring Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.

[37] C Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press Inc., Florida, 2000.

[38] A. Rukhin, J. Soto, M. Nechvatal, J.and Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, National Inst. of Standards and Technology, Gaithersburg, MD, August 2008.

[39] T Sang, RLWang, and YX Yan. Perturbance-based algorithm to expand cycle length of chaotic key stream. Electronics Letters, 34(9):873-874, April 1998.

[40] T Stojanovski and L Kocarev. Chaos-based random number generators - part i: Analysis. IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, 48(3):281-288, March 2001.

[41] G. Tang, X. Liao, and Y. Chen. A novel method for designing s-boxes based on chaotic maps. Chaos Solit. Fract., 23:413-419, 2005.

[42] J. Uis, E. Ugalde, and G. Salazar. A cryptosystem based on cellular automata. Chaos, 8:819-822, 1998.

[43] K. Wang, W.-J. Pei, L.-H. Zou, and Z.-Y. He. Comment on novel public key encryption technique based on multiple chaotic systems. Phys. Rew. Lett, 95:816-818, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top