跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 09:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾惠雯
研究生(外文):Chung, Hui-Wen
論文名稱:利用神經基板裝置研究中樞神經細胞軸突受損後軸突退化與再生的變化
指導教授:張兗君
指導教授(外文):Chang, Yen-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:65
中文關鍵詞:軸突退化軸突再生神經基本裝置中樞神經細胞
外文關鍵詞:axonal degenerationaxonal regenerationneuronal chip deviceCNS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
神經再生,一直是神經醫學研究中的重要議題。目前對研究周邊神經系統再生已有些相關成果,然而對中樞神經系統損傷後無法再生的狀況,一直是難以解決的問題,導致許多神經相關疾病難以完全治癒,例如:癱瘓、腦中風、神經退化疾病等。而近幾年許多研究顯示這些神經相關疾病中有軸突退化的現象產生,進一步導致神經細胞死亡,因此了解造成受損後軸突退化的機制,成為神經再生中一個很重要的課題。
目前我們實驗室發展出一套神經細胞培養基板裝置(neuronal chip device),使細胞體與軸突生長在不同的特定區域,因此能觀察軸突損傷後細胞體與軸突的變化。本研究分三部份,第一部份觀察不同時間及不同區域的神經細胞經軸突損傷後細胞體與軸突的形態,主要是希望藉由形態上的改變進而了解軸突損傷後對細胞體及軸突的影響。第二部份為觀察不同蛋白質對軸突損傷後細胞體與軸突的影響,利用形態上的改變來探討軸突損傷後軸突退化及軸突再生與不同蛋白質間的交互作用。第三部份為研究軸突蛋白質的表現,我們探討遠端軸突能否有局部蛋白質的新生成,利用click chemistry能以影像方式觀察特定時間點是否有新生成的蛋白質。由初步的實驗結果得知軸突損傷後神經細胞體依舊存活,甚至可以觀察到有新的軸突能延著所轉印poly-L-lysine的細線生長,而受損後遠端軸突也可以偵測到有蛋白質的表現。
目前已知軸突的退化過程包含許多因素,當中可能也會對軸突再生造成影響。由本實驗證明利用神經細胞培養基板裝置能對於研究神經的退化與再生的機制有所助益,最終希望能對神經的退化與再生的機制有更清楚的瞭解,進而對研究中樞神經再生的難題有所助益。

Nerve regeneration is an important issue in neuromedical research. Accumulating evidence has indicated that the axons in adult mammalian brain and spinal cord do not regenerate after injury. On the other hand, in the peripheral nervous system, nerves exhibit remarkable capability of regeneration after injury. It remains rather difficult to cure patients suffering from many diseases wherein the axons in the central nervous systems have been injured. Recent discoveries have also indicated that axonal degeneration occurring in diseased nervous systems would eventually cause neuronal death. Thus, studying the mechanism of axonal degeneration is considered ancillary of studying the mechanisms underlying neuronal regeneration.
More recently, our laboratory develop has developed a neuronal chip device. On the chip surface, axons of cultured rat hippocampal neurons are guided along poly-L-lysine-coated fine lines to grow in areas distinct from where their cell bodies reside. Therefore, we can observe the morphological change and protein expression on cell bodies and axons separately after axotomy.
This study consisted of three parts. The first part consisted of the observations of the morphological changes of cell bodies and axons at different times after axotomy. The second part consisted of studies of the effects of different extrinsic proteins on the degeneration and re-growth of axons after axotomy. The third part focused on analyzing local protein expression in the axon by using Click Chemistry and confocal microscopy. The results indicated that the majority of neurons on the chip could survive axotomy and that, after axotomy and subsequent degeneration of distal axon fragments, new axons could re-grow along the poly-L-lysine-coated fine lines into the areas on the chip designated to be filled by axons.
A number of factors have been known to affect the process of axonal degeneration and regeneration. Here, the study has indicated that chip device developed by our laboratory is a useful tool for studying the mechanisms underlying axonal degeneration and regeneration. The results may help the development of new therapeutic strategies for axonal regeneration in the future.

壹、緒論…………………………………………………………… 1
貳、實驗材料與方法
第一節 實驗材料…………………………………………………6
第二節 實驗方法…………………………………………………8
參、實驗結果
一、不同軸突損傷方式對於神經細胞與軸突的影響…………… 14
二、軸突損傷對較為成熟的神經細胞之影響…………………… 16
三、以免疫染色法觀察軸突損傷後神經細胞及軸突的形態…… 16
四、不同的蛋白質對軸突退化的影響…………………………… 17
五、不同蛋白質對重新生長軸突的影響………………………… 18
六、阻斷蛋白質生成對軸突損傷後神經細胞及軸突的影響…… 20
七、軸突損傷後神經細胞與軸突的蛋白質生成………………… 20
肆、討論
一、不同軸突損傷方式對神經細胞及軸突所造成的影響……… 22
二、探討成長中與較成熟的神經細胞對於軸突損傷後的影響… 23
三、觀察軸突損傷後細胞體與軸突的細胞骨架形態…………… 24
四、探討不同蛋白質對軸突退化與新生長軸突的影響………… 24
五、探討軸突損傷後遠端軸突蛋白質生成的影響……………… 25
六、結語與未來展望……………………………………………… 26
伍、圖……………………………………………………………… 28
陸、參考文獻……………………………………………………… 59
柒、附錄…………………………………………………………… 63

Atwal, J.K., Pinkston-Gosse, J., Syken, J., Stawicki, S., Wu, Y., Shatz, C., and Tessier-Lavigne, M. (2008). PirB is a Functional Receptor for Myelin Inhibitors of Axonal Regeneration. Science 322, 967-970.

Campenot, R.B. (1982). Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev Biol 93, 1-12.

Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439.

Daniloff, J.K., Levi, G., Grumet, M., Rieger, F., and Edelman, G.M. (1986). Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. J Cell Biol 103, 929-945.

Dieterich, D.C., Hodas, J.J., Gouzer, G., Shadrin, I.Y., Ngo, J.T., Triller, A., Tirrell, D.A., and Schuman, E.M. (2010). In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13, 897-905.

Domeniconi, M., Cao, Z.U., Spencer, T., Sivasankaran, R., Wang, K.C., Nikulina, E., Kimura, N., Cai, H., Deng, K.W., Gao, Y., et al. (2002). Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283-290.

FernandezValle, C., Gorman, D., Gomez, A.M., and Bunge, M.B. (1997). Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci 17, 241-250.

George, E.B., Glass, J.D., and Griffin, J.W. (1995). Axotomy-Induced Axonal Degeneration Is Mediated by Calcium Influx through Ion-Specific Channels. J Neurosci 15, 6445-6452.

GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444.

Hengst, U., Deglincerti, A., Kim, H.J., Jeon, N.L., and Jaffrey, S.R. (2009). Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nature Cell Biology 11, 1024-U1263.

Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., and Misgeld, T. (2005). In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11, 572-577.

Krause, K., Gerding, H., and Cremer-Bartels, G. (1994). [Effect of biopterin on the electroretinogram of Long-Evans rats]. Ophthalmologe 91, 166-168.

Low, K., Culbertson, M., Bradke, F., Tessier-Lavigne, M., and Tuszynski, M.H. (2008). Netrin-1 is a novel myelin-associated inhibitor to axon growth. J Neurosci 28, 1099-1108.

Lunn, E.R., Perry, V.H., Brown, M.C., Rosen, H., and Gordon, S. (1989). Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci 1, 27-33.

Mckeon, R.J., Schreiber, R.C., Rudge, J.S., and Silver, J. (1991). Reduction of Neurite Outgrowth in a Model of Glial Scarring Following Cns Injury Is Correlated with the Expression of Inhibitory Molecules on Reactive Astrocytes. J Neurosci 11, 3398-3411.

Morgenstern, D.A., Asher, R.A., and Fawcett, J.W. (2002). Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137, 313-332.

Moses, J.E., and Moorhouse, A.D. (2007). The growing applications of click chemistry. Chem Soc Rev 36, 1249-1262.

Paraoanu, L.E., Becker-Roeck, M., Christ, E., and Layer, P.G. (2006). Expression patterns of neurexin-1 and neuroligins in brain and retina of the chick embryo: Neuroligin-3 is absent in retina. Neurosci Lett 395, 114-117.

Raff, M.C., Whitmore, A.V., and Finn, J.T. (2002). Axonal self-destruction and neurodegeneration. Science 296, 868-871.

Roche, F.K., Marsick, B.M., and Letourneau, P.C. (2009). Protein synthesis in distal axons is not required for growth cone responses to guidance cues. J Neurosci 29, 638-652.

Sahly, I., Khoutorsky, A., Erez, H., Prager-Khoutorsky, M., and Spira, M.E. (2006). On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. Journal of Comparative Neurology 494, 705-720.

Schlaepfer, W.W., and Bunge, R.P. (1973). Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J Cell Biol 59, 456-470.

Sievers, C., Platt, N., Perry, V.H., Coleman, M.P., and Conforti, L. (2003). Neurites undergoing Wallerian degeneration show an apoptotic-like process with annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res 46, 161-169.

Stoll, G., and Muller, H.W. (1999). Nerve injury, axonal degeneration and neural regeneration: Basic insights. Brain Pathol 9, 313-325.

Taylor, A.M., Berchtold, N.C., Perreau, V.M., Tu, C.H., Li Jeon, N., and Cotman, C.W. (2009). Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29, 4697-4707.

Tsao, J.W., George, E.B., and Griffin, J.W. (1999). Temperature modulation reveals three distinct stages of Wallerian degeneration. J Neurosci 19, 4718-4726.

Verma, P., Chierzi, S., Codd, A.M., Campbell, D.S., Meyer, R.L., Holt, C.E., and Fawcett, J.W. (2005). Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25, 331-342.

Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., and He, Z.G. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941-944.

Willis, D., Li, K.W., Zheng, J.Q., Chang, J.H., Smit, A., Kelly, T., Merianda, T.T., Sylvester, J., van Minnen, J., and Twiss, J.L. (2005). Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. Journal of Neuroscience 25, 778-791.

Willis, D.E., and Twiss, J.L. (2006). The evolving roles of axonally synthesized proteins in regeneration. Curr Opin Neurobiol 16, 111-118.

Willis, D.E., van Niekerk, E.A., Sasaki, Y., Mesngon, M., Merianda, T.I., Williams, G.G., Kendall, M., Smith, D.S., Bassell, G.J., and Twiss, J.L. (2007). Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 178, 965-980.

Wu, H.I., Cheng, G.H., Wong, Y.Y., Lin, C.M., Fang, W., Chow, W.Y., and Chang, Y.C. (2010). A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip 10, 647-653.

Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617-627.

Yong, V.W., Krekoski, C.A., Forsyth, P.A., Bell, R., and Edwards, D.R. (1998). Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21, 75-80.

Zhai, Q.W., Wang, J., Kim, A., Liu, Q., Watts, R., Hoopfer, E., Mitchison, T., Luo, L.Q., and He, Z.G. (2003). Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39, 217-225.

Zimmerman, U.J., and Schlaepfer, W.W. (1982). Characterization of a brain calcium-activated protease that degrades neurofilament proteins. Biochemistry 21, 3977-3982.

Zimmerman, U.P., and Schlaepfer, W.W. (1984). Multiple forms of Ca-activated protease from rat brain and muscle. J Biol Chem 259, 3210-3218.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文