(54.236.58.220) 您好!臺灣時間:2021/03/08 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周哲民
研究生(外文):Chou, Che-Min
論文名稱:對流式漸擴微流道沸騰熱傳散熱技術應用於高效率電子元件之研究
指導教授:潘欽
指導教授(外文):Pan, Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:113
中文關鍵詞:沸騰微流道
外文關鍵詞:microchannelboiling
相關次數:
  • 被引用被引用:4
  • 點閱點閱:385
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電子元件微小化技術不斷進步,使得在相同面積下容納更多的電子元件,因此,單位面積下所產生的熱劇增,這將造成電子產品的散熱問題。本研究即針對雙相移熱的方式,並利用微機電技術設計多平行漸擴微通道(microchannel)使用介電液FC-72(沸點為56℃)於微流道沸騰雙相流散熱技術之研究。
本研究的目的在改善多平行流道入口的設計,並探討漸擴角於沸騰下的效應,進一步提昇多平行漸擴微流道之熱傳能力。研究發現,樹枝狀結構的入口設計能有效的提供流道與流道間均勻的流量分佈,進而提昇最大傳熱量。本研究探討333、666及999 kg/m2s三種以平均流道截面積為基準之質量通率效應。在質量通率為999 kg/m2s的熱傳能力提昇最佳,能提高約35%的臨界熱通率。此外,研究也發現流道漸擴角越大,較能有效的抑止逆流現象的發生;因此,在高質量通率時有較佳臨界熱通率,而在低質量通率時,角度效應對熱傳所造成的影響並不顯著。
本研究證實,多平行微流道輔以適當的入口與漸擴角設計,可具有穩定的高移熱能力。若進一步加深流道,並利用雙入口對流之設計或文獻中之輻射型設計,將可利用熱傳面積倍增的效果滿足現今電子元件高移熱能力的需求。

目錄
摘要…………………………………………………………………………………Ι
誌謝…………………………………………………………………………………Ⅱ
目錄…………………………………………………………………………………Ⅲ
表目錄………………………………………………………………………………Ⅴ
圖目錄………………………………………………………………………………Ⅵ
符號對照表…………………………………………………………………………Ⅸ
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
1.3 論文架構 9
第二章 文獻回顧 10
2.1 工作流體於沸騰時特性探討 10
2.2 沸騰穩定性探討 16
2.3 流道入口結構影響 19
第三章 實驗設計與熱傳計算分析 21
3.1 實驗環路系統 21
3.1.1 實驗設備環路 21
3.1.2 實驗儀器介紹 22
3.2 測試段流道 26
3.2.1 微流道製作 26
3.2.2 流道製作程序 28
3.2.3 實驗參數 30
3.3 工作流體 33
3.4 實驗流程與方法 35
3.5 熱傳分析 38
3.5.1 能量平衡與熱損估算 38
3.5.2 雙相流熱通率分析 41
3.5.3 熱對流係數分析計算 42
第四章 實驗結果與討論 43
4.1 微流道水力直徑之決定 43
4.2 入口改良對流量分佈影響 45
4.3 雙相流動型態流譜 51
4.4 比較漸擴角度對沸騰熱傳的影響 63
4.5 比較不同入口設計對沸騰熱傳的影響 70
4.6 利用經驗公式比對臨界熱通率 74
4.7 乾化現象 76
第五章 結論 77
5.1 本論文研究成果 77
5.2 未來研究建議 78
參考文獻 82
附錄A實驗數據 87
附錄B系統熱損評估 102

1.Y. Joshi and X. Wei, Micro and meso scale compact heat exchangers in electronics thermal management–a review. In Proceedings of the 5th International Conference on Enhanced, Compact and Ultra Compact Heat Exchangers, Hoboken, NJ, USA, 162–179(2005).
2.I. Mudawar, D. Bharathan, K. Kelly and S. Narumanchi, Two Phase Spray Cooling of Hybrid Vehicle Electronics, Proceedings of ITherm 2008, Orlando, FL.
3.D. B. Tuckerman and R. F. W. Pease, High Performance heat sinking for VLSI, IEEE Electronic Device Letters, EDL-2(1981)126-129.
4.http://www.me.gatech.edu/yogendra.joshi/METTL/ (Microelectronics and Emerging Technologies Thermal Laboratory).
5.T. Henning, J.J. Brandner, K. Schubert, M. Lorenzini and G.-L. Morini, Low-Frequency Instabilities in the Operation of Metallic Multi-Microchannel Evaporators. Heat Transfer Engineering 28 834-841(2007).
6.S. Maikowske, J.J. Brandner and R. Lange , A novel device for the optical investigation of phase transition in micro channel array evaporators, Applied Thermal Engineering, 1-5(2010).
7.C. T. Lu and C.Pan, Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels Proc. 13th Int. Heat Transfer Conf. (Sydney, Australia, 2006).
8.S.G. Kandlikar, Heat transfer mechanisms during flow boiling in microchannels, ASME J. Heat Transfer 126 8–16(2004).
9.H. J. Lee, D.Y. Liu, Shi-chune Yao, Flow instability of evaporative micro-channels, Int. J. Heat and Mass Transfer, Vol.53, pp.1740–1749(2010).
10.K.R. Samant and T.W. Simon, Heat transfer from a small heated region to R-113 and FC-72, Trans. ASME J. Heat Transfer, 111 1053–1059(1989).
11.T. Y. Lee and T. W. Simon, "High-Heat-Flux Forced Convection Boiling from Small Regions", Heat Transfer In Electronics, ASME HTD-Vol.111, pp.7-16(1989).
12.S. M. You, A. Bar-Cohen and T.W. Simon, Boiling Incipience and Boiling Heat Transfer of Highly-Wetting Dielectric Fluids from Electronic Materials, InterSociety Conference on Thermal Phenomena(1990).
13.P. J. Marto and V. J. Lepere, Pool boiling heat transfer from enhanced surfaces to dielectric fluids, ASME J. Heat Transfer, vol. 104, pp. 292-297(1982).
14.C.O. Gersey and I. Mudawar, Effects of orientation on critical heat flux from chip arrays during flow boiling, Trans. ASME J. Electr. Pack. 114 290–299(1992).
15.T.C. Willingham and I. Mudawar, Forced-convection boiling and critical heat flux from a linear array of discrete heat sources, Int. J. Heat Mass Transfer 35 2879–2890(1992).
16.T.J. Heindel, S. Ramadhyani and F.P. Incropera, Liquid immersion cooling of a longitudinal array of discrete heat sources in protruding substrates: II – forced convection boiling, Trans. ASME J. Electr. Pack. 114 63–70(1992).
17.P. S. Wu and T. W. Simon, Effects of Dissolved Gases on Subcooled Flow Boiling from Small Heated Regions with and without Streamwise Concave Curvature, Thermal Phenomena in Electronic Systems, 1994.I-THERM IV. Concurrent Engineering and Thermal Phenomena., InterSociety Conference on,pp.22-31(1994).
18.C.P. Tso, K.W. Tou and G.P. Xu, Flow boiling critical heat flux of FC-72 from flush-mounted and protruded simulated chips in a vertical rectangular channel, Int. J. Multiphase Flow 26 351–365(2000).
19.Y. Ma and J.N. Chung, A study of bubble dynamics in reduced gravity forced-convection boiling, Int. J. Heat Mass Transfer 44 399–415(2001).
20.R. Situ, Y. Mi, M. Ishii and M. Mori, Photographic study of bubble behavior in forced convection subcooled boiling, Int. J. Heat Mass Transfer 47 3659–3667(2004).
21.H. Zhang , I. Mudawar and M. M. Hasan, Experimental assessment of the effects of body force , surface tension force and inertia on flow boiling CHF, Int. J. Heat and Mass Transfer 45 ,PP. 4079-4095(2002).
22.H. Honda, H. Takamastu. and J.J. Wei, Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness, Trans. ASME J. Heat Transfer 124 383–389(2002).
23.M. Yuan, J. Wei., Y. Xue and J. Fang., Subcooled flow boiling heat transfer of FC-72 from silicon chips fabricated with micro-pin-fins, Int. J. Thermal Sciences 4 1416–1422 (2009).
24.Y.M. Lie, J.H. Ke, W.R. Chang, T.C. Cheng and T.F. Lin, Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip, Int. J. Heat and Mass Transfer 50 3862–3876(2007).
25.W. Qu, I. Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks, Int. J. Heat Mass Transfer 45 2549–2565(2002).
26.G. Hetsroni, A. Mosyak, E. Pogrebnyak and Z. Segal, Periodic boiling in parallel micro-channels at low vapor quality, Int. J. Multiphase Flow 31 371-392(2006).
27.G. Wang, P. Cheng and H. Wu, Unstable and stable flow boiling in parallel microchannels and in a single microchannel, Int. J. Heat and Mass Transfer 50 4297–4310(2007).
28.P. C. Lee and C.Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section, J. Micromech. Microeng. 18 025005 (2008).
29.R. Chein and J. Chen, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance, Int. J. Thermal Sciences, 48 1627–1638(2009).
30.A. Y. Alharbi, D. V. Pence and R. N. Cullion, Thermal Characteristics of Microscale Fractal-Like Branching Channels, J. Heat Transfer 126 5 744–752, (2004).
31.Xiang-Qi Wang, A. S. Mujumdar and C. Yap, Effect of bifurcation angle in tree-shaped microchannel networks, J. Applied Physics 102, 073530 (2007).
32.D. Haller, P. Woias and N. Kockmann, Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions, Int. J. Heat and Mass Transfer 52 2678–2689(2009).
33.Y. Kawamura, N. Ogura, T. Yamamoto and A. Igarashi, Aminiaturized methanol reformer with Si-base micro-reactor for a small PEMFC, Chemical Engineering Science, 161 1092-1101 (2006).
34.Fluorinert™ Electronic Liquid FC-72 Product information, 3M Center.
35.P. F. Incripera and D.V. Dewitt, Fundamentals of heat and mass transfer, John Wiley and Sons, Ing., New York(1996).
36.J. J. Hwang, F. G. Tseng and C. Pan, Ethanol-CO2 two phase flow in diverging and converging microchannels, Int. J. Multiphase, 31 548-570 (2005).
37.M. B. Bowers, and I. Mudawar, High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sink, Int. J. Heat Mass Transfer, 37 321-332(1994).
38. L. Wojtan, R. Revellin and J. R. Thome, Investigation of Saturated Flow Boiling of Water in a Vertical Small Diameter Tube, Exp. Therm. Fluid Sci, 30 765-774(2006).
39.W. Qu and I. Mudawar, Measurement and Correlation of Critical Heat Flux in Two-phase Micro-channel Heat Sinks, Int. J. Heat Mass Transfer, 47 2045-2059(2004).
40.A. Koşar, C. J. Kuo, and Y. Peles, Boiling Heat Transfer in Rectangular Microchannels with Reentrant Cavities, AMSE J. Heat Transfer, 48 4867-4886(2005).
41.http://www.3m.com/index.html?change=true (3M Company)
42.http://www51.honeywell.com/honeywell/ (Honeywell Company)


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔