跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱育葶
論文名稱:低損耗次波長混合模態表面電漿子波導之模擬分析
論文名稱(外文):Simulation Analysis of Low Loss Sub-Wavelength Confined Hybrid Surface Plasmonic Polariton Waveguides
指導教授:柳克強
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:123
中文關鍵詞:電漿子波導混合模態
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的目地在於藉由模擬來分析表面電漿子波導的混合模態,並進一步改變波導的幾何結構,以期能達到低損耗次波長的研究目標。傳統的電漿子波導在傳遞長度到達100 μm 時,能量局限的範圍已超過1 μm,而利用混合模態來傳遞則可以大大改善此情形。且再更進一步提出新結構,期待在能量傳遞時的能量分布可以更集中,如此將可以在定量的面積上提供更多的波導傳遞。

表面電漿子混合模態是結合表面電漿子模態與介電質模態,使混合模態可以在相對小的限制範圍中傳遞更遠的距離。利用介電質模態所帶來的影響,將能量限制的範圍由金屬移往介電質移動,以減少金屬所產生的損耗。與之前表面電漿子波導所使用的模擬方法不同的是,此研究導入工業界常用的電磁設計軟體HFSS 取代傳統自行寫程式,預期在可接受的誤差內,大量減少研究的入門時間,在未來的研究發展上更容易快速發展出更好的結構。研究初期,先將以HFSS 設計出一裝入預期模擬結構的空腔,改變空腔內波的波數來使其共振頻率座落在期望的通訊頻率上,並將此模擬手法與其他模擬表面電漿子波導的研究團隊的研究結果做比較,確定其間的差距為可接受之範圍。

在確認此模擬手法的可行性之後,首先先改變波導內砷化鎵的形狀,以期能在不減少傳播距離的情況下達到降低製程成本。接著再提出另一於銀基板上挖一溝槽的新結構,希望可以透過結構改變的方式,使能量更為集中,以縮小限制範圍。在進一步更詳細地分析溝槽深度
與寬度對此表面電漿子波導所帶來的影響之後,發現帶有溝槽的新結
構與沒有溝槽的結構相比,的確可以有效地在傳播距離減少小於10 %的情況下,縮小限制範圍於50 %以下。然而由於此結構目前尚屬初步研發階段,期待在未來有更新的結構發展提出,並且配合製程技術的成熟化,更可進一步應用在光積體電路上。

The main purpose of this thesis is to present a new geometric structure for the surface plasmon polariton (SPP) waveguide. In order to have low loss sub-wavelength field confinement, basic ideas for the proposed structure are based on the concepts of hybrid SPP modes that combine typical SPP modes with dielectric waveguide modes. Typical long-range SPP waveguides usually have more than 1 μm mode widths when propagation distances reach about 100 μm. The hybrid SPP waveguide structure have long-range propagation distance with relatively small mode confinement area.

Different from some numerical methods in prior works, this thesis makes use of a methodology operated in HFSS to calculate the hybrid plasmonic guided-wave structures. With eigenmode solver in HFSS, eigenmodes or resonant frequencies of the optical waveguide structures are calculated and key parameters are extracted. This methodology is practiced and confirmed reliable since the simulated results are corresponding to data presented in prior works. With these industrial tool and simulation methodology, time for developing and analyzing new SPP waveguide structures is shortened.

Based on typical hybrid SPP guided-wave structure, the proposed hybrid plasmonic waveguide structure contains an etched channel in silver under the GaAs cylinder. The calculated propagation distance of the proposed waveguide structure reaches about 30 μm with sub-wavelength field confinement. Comparing with typical cylinder based SPP guided-wave structure, the mode area shrinks more than 50% while the propagation distance only decreases only 10%. That is, the proposed hybrid plasmonic waveguide provides comparable propagation distance to typical design while enhancing the field confinement. As advancement of the lithographic micro-processing technology, the proposed optical waveguide structure will have chance to be used in newly optical integrated circuits.

1. Introduction
1.1 Backgrounds
1.2 Motivations and Thesis Organizations
2. Basic Theories
2.1 The Drude Model
2.2 Plasma Dielectric Constants
2.3 Surface Plasmon Polaritons at a Single Interface
2.4 The Skin Depth
2.5 The Loss Tangent
3. Literature Review
3.1 Surface Plasmon Polariton Waveguides
3.2 Hybrid Plasmonic Waveguides
4. Simulation Methodologies
4.1 Introduction to Simulation Methodologies
4.2 Simulation Procedures and Results
4.3 Calculation of Propagation Distance
4.4 Calculation of Mode Area
4.5 Discussions on Silver Plasma Dielectric Constant
5. Further Analyses of HPP Waveguides
5.1 Circular and Square Cross-Sectional Structures
5.2 Proposed Hybrid Plasmonic Waveguide
6. Conclusions
Appendix
A. Collected Parameters for Silver
B. Calculating Propagation Distance with Different Methods
C. File Names of Simulated Cases
References
[1] W. L. Barnes, et al., "Surface Plasmon Subwavelength Optics," Nature, vol. 424, pp. 824-830, Aug 2003.
[2] M. T. Hill, "Nanophotonics: Lasers Go Beyond Diffraction Limit," Nature Nanotechnology, vol. 4, pp. 706-707, Nov 2009.
[3] S. A. Maier, "Waveguiding: The Best of Both Worlds," Nature Photonics, vol. 2, pp. 460-461, Aug 2008.
[4] S. A. Maier and H. A. Atwater, "Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures," Journal of Applied Physics, vol. 98, p. 011101, Jul 2005.
[5] R. F. Oulton, et al., "Confinement and Propagation Characteristics of Subwavelength Plasmonic Modes," New Journal of Physics, vol. 10, p. 105018, Oct 2008.
[6] P. Berini, "Figures of Merit for Surface Plasmon Waveguides," Optics Express, vol. 14, pp. 13030-13042, Dec 2006.
[7] K. Y. Kim, "Effects of Using Different Plasmonic Metals in Metal/Dielectric/Metal Subwavelength Waveguides on Guided Dispersion Characteristics," Journal of Optics a-Pure and Applied Optics, vol. 11, p. 075003, Jul 2009.
[8] A. Degiron, et al., "Experimental Comparison Between Conventional and Hybrid Long-Range Surface Plasmon Waveguide Bends," Physical Review A, vol. 77, p. 021804, Feb 2008.
[9] T. Holmgaard and S. I. Bozhevolnyi, "Theoretical Analysis of Dielectric-Loaded Surface Plasmon-Polariton Waveguides," Physical Review B, vol. 75, p. 245405, Jun 2007.
[10] P. Berini, et al., "Characterization of Long-Range Surface-Plasmon-Polariton Waveguides," Journal of Applied Physics, vol. 98, p. 043109, Aug 2005.
[11] A. Manjavacas and F. J. G. de Abajo, "Coupling of Gap Plasmons in Multi-Wire Waveguides," Optics Express, vol. 17, pp. 19401-19413, Oct 2009.
[12] R. F. Oulton, et al., "A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation," Nature Photonics, vol. 2, pp. 496-500, Aug 2008.
[13] I. Avrutsky, et al., "Sub-Wavelength Plasmonic Modes in a Conductor-Gap-Dielectric System with a Nanoscale Gap," Optics Express, vol. 18, pp. 348-363, Jan 2010.
[14] S. H. Nam, et al., "Subwavelength Hybrid Terahertz Waveguides," Optics Express, vol. 17, pp. 22890-22897, Dec 2009.
[15] M. Fujii, et al., "Dispersion Relation and Loss of Subwavelength Confined Mode of Metal-Dielectric-Gap Optical Waveguides," IEEE Photonics Technology Letters, vol. 21, pp. 362-364, Mar 2009.
[16] D. F. P. Pile, et al., "On Long-Range Plasmonic Modes in Metallic Gaps," Optics Express, vol. 15, pp. 13669-13674, Oct 2007.
[17] A. Degiron and D. R. Smith, "Numerical Simulations of Long-Range Plasmons," Optics Express, vol. 14, pp. 1611-1625, Feb 2006.
[18] A. Degiron, et al., "Simulations of Hybrid Long-Range Plasmon Modes with Application to 90 Degrees Bends," Optics Letters, vol. 32, pp. 2354-2356, Aug 2007.
[19] J. T. Kim, et al., "Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide," IEEE Photonics Technology Letters, vol. 19, pp. 1374-1376, Sep-Oct 2007.
[20] J. Grandidier, et al., "Dielectric-Loaded Surface Plasmon Polariton Waveguides on a Finite-Width Metal Strip," Applied Physics Letters, vol. 96, p. 063105, Feb 2010.
[21] P. Berini, et al., "Long-Range Surface Plasmons on Ultrathin Membranes," Nano Letters, vol. 7, pp. 1376-1380, May 2007.
[22] L. Liu, et al., "Novel Surface Plasmon Waveguide for High Integration," Optics Express, vol. 13, pp. 6645-6650, Aug 2005.
[23] A. Degiron and D. R. Smith, "Numerical Simulations of Plasmonic Transmission Lines," Integrated Photonics Research and Applications/Nanophotonics, p. NFA6, 2006.
[24] X. Y. Zhang, et al., "Subwavelength Plasmonic Waveguides Based on ZnO Nanowires and Nanotubes: A Theoretical Study of Thermo-Optical Properties," Applied Physics Letters, vol. 96, p. 043109, Jan 2010.
[25] Y. S. Bian, et al., "Symmetric Hybrid Surface Plasmon Polariton Waveguides for 3D Photonic Integration," Optics Express, vol. 17, pp. 21320-21325, Nov 2009.
[26] V. Giannini, et al., "Long-Range Surface Polaritons in Ultra-Thin Films of Silicon," Optics Express, vol. 16, pp. 19674-19685, Nov 2008.
[27] A. Giannattasio and W. L. Barnes, "Direct Observation of Surface Plasmon-Polariton Dispersion," Optics Express, vol. 13, pp. 428-434, Jan 2005.
[28] S. I. Bozhevolnyi, et al., "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Physical Review Letters, vol. 95, p. 046802, Jul 2005.
[29] D. F. P. Pile and D. K. Gramotnev, "Channel Plasmon-Polariton in a Triangular Groove on a Metal Surface," Optics Letters, vol. 29, pp. 1069-1071, May 2004.
[30] E. Moreno, et al., "Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons," Physical Review Letters, vol. 100, p. 023901, Jan 2008.
[31] J. Takahara, et al., "Guiding of a One-Dimensional Optical Beam withNanometer Diameter," Optics Letters, vol. 22, pp. 475-477, Apr 1997.
[32] J. Jung, et al., "Theoretical Analysis of Square Surface Plasmon-PolaritonWaveguides for Long-Range Polarization-Independent Waveguiding,"Physical Review B, vol. 76, p. 035434, Jul 2007.
[33] D. F. P. Pile, et al., "Theoretical and Experimental Investigation of Strongly Localized Plasmons on Triangular Metal Wedges for Subwavelength Waveguiding," Applied Physics Letters, vol. 87, p. 061106, Aug 2005.
[34] J. T. Kim, et al., "Silver Stripe Optical Waveguide for Chip-to-Chip Optical Interconnections," IEEE Photonics Technology Letters, vol. 21, pp. 902-904, Jul 2009.
[35] H. Choi, et al., "Compressing Surface Plasmons for Nano-Scale Optical Focusing," Optics Express, vol. 17, pp. 7519-7524, Apr 2009.
[36] V. S. Volkov, et al., "Plasmonic Candle: Towards Efficient Nanofocusing with Channel Plasmon Polaritons," New Journal of Physics, vol. 11, p. 113043, Nov 2009.
[37] Z. L. Samson, et al., "Femtosecond Active Plasmonics: Ultrafast Control of Surface Plasmon Propagation," Journal of Optics a-Pure and Applied Optics, vol. 11, p. 114031, Nov 2009.
[38] V. J. Sorger, et al., "Plasmonic Fabry-Perot Nanocavity," Nano Letters, vol. 9, pp. 3489-3493, Oct 2009.
[39] M. Ambati, et al., "Active Plasmonics: Surface Plasmon Interaction with Optical Emitters," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp. 1395-1403, Nov-Dec 2008.
[40] M. Allione, et al., "Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities," Nano Letters, vol. 8, pp. 31-35, Jan 2008.
[41] K. R. Catchpole and A. Polman, "Plasmonic Solar Cells," Optics Express, vol. 16, pp. 21793-21800, Dec 2008.
[42] S. A. Maier, "Plasmonics: Fundamentals and Applications," Springer, 1st Edition.
[43] M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing," John Wiley & Sons, Inc., 2nd Edition.
[44] E. D. Palik, "Handbook of Optical Constants of Solids," Academic Press, 1st Edition.
[45] D. M. Pozar, "Microwave Engineering," John Wiley & Sons, Inc., 3rd Edition.
[46] P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Physical Review B, vol. 6, pp. 4370-4379, 1972.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top