|
[1] W. L. Barnes, et al., "Surface Plasmon Subwavelength Optics," Nature, vol. 424, pp. 824-830, Aug 2003. [2] M. T. Hill, "Nanophotonics: Lasers Go Beyond Diffraction Limit," Nature Nanotechnology, vol. 4, pp. 706-707, Nov 2009. [3] S. A. Maier, "Waveguiding: The Best of Both Worlds," Nature Photonics, vol. 2, pp. 460-461, Aug 2008. [4] S. A. Maier and H. A. Atwater, "Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures," Journal of Applied Physics, vol. 98, p. 011101, Jul 2005. [5] R. F. Oulton, et al., "Confinement and Propagation Characteristics of Subwavelength Plasmonic Modes," New Journal of Physics, vol. 10, p. 105018, Oct 2008. [6] P. Berini, "Figures of Merit for Surface Plasmon Waveguides," Optics Express, vol. 14, pp. 13030-13042, Dec 2006. [7] K. Y. Kim, "Effects of Using Different Plasmonic Metals in Metal/Dielectric/Metal Subwavelength Waveguides on Guided Dispersion Characteristics," Journal of Optics a-Pure and Applied Optics, vol. 11, p. 075003, Jul 2009. [8] A. Degiron, et al., "Experimental Comparison Between Conventional and Hybrid Long-Range Surface Plasmon Waveguide Bends," Physical Review A, vol. 77, p. 021804, Feb 2008. [9] T. Holmgaard and S. I. Bozhevolnyi, "Theoretical Analysis of Dielectric-Loaded Surface Plasmon-Polariton Waveguides," Physical Review B, vol. 75, p. 245405, Jun 2007. [10] P. Berini, et al., "Characterization of Long-Range Surface-Plasmon-Polariton Waveguides," Journal of Applied Physics, vol. 98, p. 043109, Aug 2005. [11] A. Manjavacas and F. J. G. de Abajo, "Coupling of Gap Plasmons in Multi-Wire Waveguides," Optics Express, vol. 17, pp. 19401-19413, Oct 2009. [12] R. F. Oulton, et al., "A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation," Nature Photonics, vol. 2, pp. 496-500, Aug 2008. [13] I. Avrutsky, et al., "Sub-Wavelength Plasmonic Modes in a Conductor-Gap-Dielectric System with a Nanoscale Gap," Optics Express, vol. 18, pp. 348-363, Jan 2010. [14] S. H. Nam, et al., "Subwavelength Hybrid Terahertz Waveguides," Optics Express, vol. 17, pp. 22890-22897, Dec 2009. [15] M. Fujii, et al., "Dispersion Relation and Loss of Subwavelength Confined Mode of Metal-Dielectric-Gap Optical Waveguides," IEEE Photonics Technology Letters, vol. 21, pp. 362-364, Mar 2009. [16] D. F. P. Pile, et al., "On Long-Range Plasmonic Modes in Metallic Gaps," Optics Express, vol. 15, pp. 13669-13674, Oct 2007. [17] A. Degiron and D. R. Smith, "Numerical Simulations of Long-Range Plasmons," Optics Express, vol. 14, pp. 1611-1625, Feb 2006. [18] A. Degiron, et al., "Simulations of Hybrid Long-Range Plasmon Modes with Application to 90 Degrees Bends," Optics Letters, vol. 32, pp. 2354-2356, Aug 2007. [19] J. T. Kim, et al., "Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide," IEEE Photonics Technology Letters, vol. 19, pp. 1374-1376, Sep-Oct 2007. [20] J. Grandidier, et al., "Dielectric-Loaded Surface Plasmon Polariton Waveguides on a Finite-Width Metal Strip," Applied Physics Letters, vol. 96, p. 063105, Feb 2010. [21] P. Berini, et al., "Long-Range Surface Plasmons on Ultrathin Membranes," Nano Letters, vol. 7, pp. 1376-1380, May 2007. [22] L. Liu, et al., "Novel Surface Plasmon Waveguide for High Integration," Optics Express, vol. 13, pp. 6645-6650, Aug 2005. [23] A. Degiron and D. R. Smith, "Numerical Simulations of Plasmonic Transmission Lines," Integrated Photonics Research and Applications/Nanophotonics, p. NFA6, 2006. [24] X. Y. Zhang, et al., "Subwavelength Plasmonic Waveguides Based on ZnO Nanowires and Nanotubes: A Theoretical Study of Thermo-Optical Properties," Applied Physics Letters, vol. 96, p. 043109, Jan 2010. [25] Y. S. Bian, et al., "Symmetric Hybrid Surface Plasmon Polariton Waveguides for 3D Photonic Integration," Optics Express, vol. 17, pp. 21320-21325, Nov 2009. [26] V. Giannini, et al., "Long-Range Surface Polaritons in Ultra-Thin Films of Silicon," Optics Express, vol. 16, pp. 19674-19685, Nov 2008. [27] A. Giannattasio and W. L. Barnes, "Direct Observation of Surface Plasmon-Polariton Dispersion," Optics Express, vol. 13, pp. 428-434, Jan 2005. [28] S. I. Bozhevolnyi, et al., "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Physical Review Letters, vol. 95, p. 046802, Jul 2005. [29] D. F. P. Pile and D. K. Gramotnev, "Channel Plasmon-Polariton in a Triangular Groove on a Metal Surface," Optics Letters, vol. 29, pp. 1069-1071, May 2004. [30] E. Moreno, et al., "Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons," Physical Review Letters, vol. 100, p. 023901, Jan 2008. [31] J. Takahara, et al., "Guiding of a One-Dimensional Optical Beam withNanometer Diameter," Optics Letters, vol. 22, pp. 475-477, Apr 1997. [32] J. Jung, et al., "Theoretical Analysis of Square Surface Plasmon-PolaritonWaveguides for Long-Range Polarization-Independent Waveguiding,"Physical Review B, vol. 76, p. 035434, Jul 2007. [33] D. F. P. Pile, et al., "Theoretical and Experimental Investigation of Strongly Localized Plasmons on Triangular Metal Wedges for Subwavelength Waveguiding," Applied Physics Letters, vol. 87, p. 061106, Aug 2005. [34] J. T. Kim, et al., "Silver Stripe Optical Waveguide for Chip-to-Chip Optical Interconnections," IEEE Photonics Technology Letters, vol. 21, pp. 902-904, Jul 2009. [35] H. Choi, et al., "Compressing Surface Plasmons for Nano-Scale Optical Focusing," Optics Express, vol. 17, pp. 7519-7524, Apr 2009. [36] V. S. Volkov, et al., "Plasmonic Candle: Towards Efficient Nanofocusing with Channel Plasmon Polaritons," New Journal of Physics, vol. 11, p. 113043, Nov 2009. [37] Z. L. Samson, et al., "Femtosecond Active Plasmonics: Ultrafast Control of Surface Plasmon Propagation," Journal of Optics a-Pure and Applied Optics, vol. 11, p. 114031, Nov 2009. [38] V. J. Sorger, et al., "Plasmonic Fabry-Perot Nanocavity," Nano Letters, vol. 9, pp. 3489-3493, Oct 2009. [39] M. Ambati, et al., "Active Plasmonics: Surface Plasmon Interaction with Optical Emitters," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp. 1395-1403, Nov-Dec 2008. [40] M. Allione, et al., "Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities," Nano Letters, vol. 8, pp. 31-35, Jan 2008. [41] K. R. Catchpole and A. Polman, "Plasmonic Solar Cells," Optics Express, vol. 16, pp. 21793-21800, Dec 2008. [42] S. A. Maier, "Plasmonics: Fundamentals and Applications," Springer, 1st Edition. [43] M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing," John Wiley & Sons, Inc., 2nd Edition. [44] E. D. Palik, "Handbook of Optical Constants of Solids," Academic Press, 1st Edition. [45] D. M. Pozar, "Microwave Engineering," John Wiley & Sons, Inc., 3rd Edition. [46] P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Physical Review B, vol. 6, pp. 4370-4379, 1972.
|