|
[1] P. N. Burns, S. R. Wilson, and D. H. Simpson, “Pulse inversion imaging of liver blood flow: Improved method for characterizing focal masses with microbubble contrast,” Invest Radiol., vol. 35, pp. 58–71, 2000. [2] D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion Doppler A new method for detecting nonlinear echoes from microbubble contrast agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, pp. 372–282, 1999. [3] N. de Jong, A. Bouakaz, and F. J. ten Cate, “Contrast harmonic imaging,” Ultrasonics, vol. 40, pp. 567–573, 2002. [4] J. Lindner, F. Villanueva, J. Dent, K. Wei, J. Sklenar, and S. Kaul, “Assessment of resting perfusion with myocardial contrast echocardiography: Theoretical and practical considerations,” Am. Heart J., vol. 139, pp. 231–240, 2000. [5] J. Y. Lee, B. I. Choi, J. K. Han, A. Y. Kim, S. H. Shin, and S. G. Moon, “Improved sonographic imaging of hepatic hemangioma with contrast-enhanced coded harmonic angiography: coMParison with MR imaging,” Ultrasound Med. Biol., vol. 28, pp. 287–295, 2002. [6] A. Abdollahi, K. E. Lipson, A. Sckell, H. Zieher, F. Klenke, D. Poerschke, A. Roth, X. Han, M. Krix, M. Bischof, P. Hahnfeldt, H. J. Grone, J. Debus, L. Hlatky, and P. E. Huber, “Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects,” Cancer Res., vol. 63, pp.8890–8898, 2003. [7] R. J. Schroeder, P. Hauff, T. Bartels, K. Vogel, J. Jeschke, N. Hidajat, and J. Maeurer, “Tumor vascularization in experimental melanomas: correlation between unenhanced and contrast enhanced power Doppler imaging and histological grading,” Ultrasound Med. Biol., vol. 27, pp. 761–771, 2001. [8] N. de Jong, “Improvements of ultrasound contrast agents,” IEEE Eng. Med. Bio., vol. 15, issue 6, pp. 72–82, 1996. [9] C. A. MacDonald, V. Sboros, and J. Gomatam, “A numerical investigation of the resonance of gas-filled microbubbles: Resonance dependence on acoustic pressure amplitude,” Ultrasonics, vol. 43, pp. 113–122, 2004. [10] W. T. Shi, and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., vol. 26, pp. 93–104, 2000. [11] K. E. Morgan, J. S. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibaov, and K. W. Ferrara, “Experimental and theoretical evaluation of microbubble behavior : Effect of transmitted phase and bubble size,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, pp. 1494–1509, 2000. [12] R. J. Eckersley, C. T. Chim, and P. N. Burns, “ Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power,” Ultrasound Med. Biol., vol. 31, pp. 213–219, 2005. [13] F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol., vol. 28, pp. 1–18, 2002. [14] T. Christopher, “Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, pp. 125–139, 1997. [15] F. Forsberg, W. T. Shi and B. B. Goldberg, “Subharmonic imaging of contrast agents,” Ultrasounics, vol. 18, pp. 93–98, 2000. [16] J. Chomas, P. Dayton, D. May, and K. Ferrara, “Nondestructive subharmonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, pp. 883–892, 2002. [17] E. Biagi, L. Breschi, E. Vannacci, and L. Masotti, “Subharmonic emissions from microbubbles : Effect of the driving pulse shape,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 53, pp. 2174–2182, 2006. [18] A. Bouakaz, M. Versluis, J. Borsboom, and N. de Jong, “Radial modulation of microbubbles for ultrasound contrast imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp. 2283–2290, 2007. [19] E. Chérin, J. Brown, S. E. Måsøy, H. Shariff, R. Karshafian, R. Williams, P. N. Burns, and F. S. Foster, “Radial modulation imaging of microbubble contrast agents at high frequency,” Ultrasound Med. Biol., vol. 34, pp. 949–962, 2008. [20] M. Emmer, H. J. Vos, M. Versluis, and N. de Jong, “Radial modulation of single microbubbles,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 56, pp. 2370–2379, 2009. [21] S. E. Måsøy, O. Standal, P. Nasholm, T. F. Johansen, and B. Angelsen, “SURF imaging: in vivo demonstration of an ultrasound contrast agent detection technique,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, pp. 1112–1121, 2008. [22] R. Hansen, and B. A. Angelsen, “SURF imaging for contrast agent detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 56, pp. 280–290, 2009. [23] S. Chen, R. Kinnick, J. F. Greenleaf, and M. Fatemi, “Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation,” Ultrasonics, vol. 44pp. 123–126, 2006. [24] S. Chen, R. R. Kinnick, J. F. Greenleaf, and M. Fatemi, “Harmonic vibro-acoustography,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp. 1346–1351, 2007. [25] C. K. Yeh, S. Y. Su, C. C. Shen, and M. L. Li, “Dual high-frequency difference excitation for contrast detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, pp. 2164–2176, 2008. [26] J. B. Keller, and M. Miksis, “Bubble oscillations of large amplitude,” J. Acoust. Soc. Am., vol. 68, pp. 628–633, 1980. [27] L. Hoff, Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001. [28] B. Angelsen, Ultrasound Imaging. Waves, Signals and Signal Processing. vol. II, Trondheim, Norway: Emantec, 2000, ch. 12, pp. 12–22, http://www.ultrasoundbook.com. [29] M. Fatemi, J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science, vol. 280, pp. 82–85, 1998. [30] A. Alizad, L. E. Wold, J. F. Greenleaf, and M. Fatemi, “Imaging mass lesions by vibro-acoustography: Modeling and experiments,” IEEE Trans. Med. Imag., vol. 23, pp. 1087–1093, 2004. [31] M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE, vol. 91, pp. 1503–1519, 2003. [32] E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, “The temperature dependence of ultrasound-stimulated acoustic emission,” Ultrasound Med. Biol., vol. 28, pp. 331–338, 2002. [33] M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-acoustic tissue mammography,” IEEE Trans. Med. Imag., vol. 21, pp. 1–8, 2002. [34] M. Belohlavek, T. Asanuma, R.R. Kinnick, J.F. Greenleaf, “Vibroacoustography: quantification of flow with highly-localized low-frequency acoustic force,” Ultrason Imaging, vol. 23, pp. 249–256, 2001. [35] J. M. Borsboom, C. T. Chin, A. Bouakaz, M. Versluis, and N. de Jong, “Harmonic chirp imaging method for ultrasound contrast,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, pp. 241–249, 2005. [36] K. Chetty, J. V. Hajnal, and R. J. Eckersley, “Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences,” Ultrasound Med. Biol., vol. 32, pp. 1887–1895, 2006. [37] Y. Sun, D. E. Kruse, and K. W. Ferrara, “Contrast imaging with chirped excitation,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp. 520–529, 2007. [38] C. Leavens, R. Williams, F. S. Foster, P. N. Burns, and M. D. Sherar, “Golay pulse encoding for microbubble contrast imaging in ultrasound,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp. 2082–2090, 2007. [39] Y. Sun, S. Zhao, P. A. Dayton, and K. W. Ferrara, “Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 53, pp. 1130–1137, 2006. [40] A. Novell, S. van der Meer, M. Versluis, N. de Jong, and A. Bouakaz, “Contrast agent response to chirp reversal: simulations, optical observations, and acoustical verification,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 56, pp. 1199–1206, 2009. [41] M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. USA, vol. 96, pp. 6603–6608, 1999 [42] S. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf., “CoMParison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, pp. 313–321, 2004. [43] J. M. Gorce, M. Arditi, and M. Schneider., “Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue,” Invest. Radiol., vol. 35, pp. 661–671, 2000. [44] S.M. van der Meer, M. Versluis, D. Lohse, C.T. Chin, A. Bouakaz, and N. de Jong, “The resonance frequency of SonoVue as observed by high-speed optical imaging,” Proc. IEEE Ultrason. Symp., vol. 1, pp. 343–345, 2004. [45] D. E. Kruse, R. H. Silverman, R. J. Fornaris, D. J. Coleman, and K. W. Ferrara., “A swept-scanning mode for estimation of blood velocity in the microvasculature.,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 1437–1440, 1998. [46] J. E. Chomas, P. A. Dayton, D. May, J. Allen, A. Klibanov, and K. Ferrara, “Optical observation of contrast agent destruction,” Appl. Phys. Lett., vol. 77, pp. 1056–1058, 2000. [47] D. E. Kruse, C. K. Yeh, and K. W. Ferrara, “A new imaging strategy utilizing wideband transient response of ultrasound contrast agents,” 2003 IEEE Ultrasonics Symposium, vol. 1, pp. 424–428, 2003. [48] S. Qin and K. W. Ferrara, “The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels,” Ultrasound Med. Biol., vol. 33, pp. 1140–1148, 2007. [49] C. F. Caskey, D. E. Kruse, D. A. Dayton, D. May, T. K. Kitano, and K. W. Ferrara, “Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns,” Appl. Phys. Lett., vol. 88, pp. 033902, 2006. [50] J. H. Vos, D. E. Goertz, and N. de Jong, “Self demodulation of high-frequency ultrasound,” J. Acoust Soc Am., vol. 127, pp. 1208–1217, 2010.
|