|
1. 行政院衛生署. 2008年死因統計結果分析. (2010). 2. Kingsley, L.A., Fournier, P.G., Chirgwin, J.M. & Guise, T.A. Molecular biology of bone metastasis. Mol Cancer Ther 6, 2609-2617 (2007). 3. Ye, L., Kynaston, H.G. & Jiang, W.G. Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med 20, 103-111 (2007). 4. Yin, J.J., Pollock, C.B. & Kelly, K. Mechanisms of cancer metastasis to the bone. Cell Res 15, 57-62 (2005). 5. Horsman, M.R. & Overgaard, J. Overcoming tumour radiation resistance resulting from acute hypoxia. Eur J Cancer 28A, 2084-2085 (1992). 6. Ivnitskii, I. & Moiseev, N. [Resistance of mice to hypoxia of various types and to X-ray radiation in the post-hypoxic period]. Kosm Biol Aviakosm Med 24, 32-34 (1990). 7. Hede, K. Environmental protection: studies highlight importance of tumor microenvironment. J Natl Cancer Inst 96, 1120-1121 (2004). 8. Sung, S.Y. & Chung, L.W. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70, 506-521 (2002). 9. Frisch, S.M. & Screaton, R.A. Anoikis mechanisms. Curr Opin Cell Biol 13, 555-562 (2001). 10. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315, 1650-1659 (1986). 11. Bonfil, R.D., Chinni, S., Fridman, R., Kim, H.R. & Cher, M.L. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol 25, 407-411 (2007). 12. Virk, M.S. & Lieberman, J.R. Tumor metastasis to bone. Arthritis Res Ther 9 Suppl 1, S5 (2007). 13. Whiteside, T.L. The Local Tumor Microenvironment. In: Kaufmann H, Wolchok JD (eds). General Principles of Tumor Immunotherapy: Basic and Clinical Applications of Tumor Immunology, 145–167 (2007). 14. Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705-713 (2008). 15. Minchinton, A.I. & Tannock, I.F. Drug penetration in solid tumours. Nat Rev Cancer 6, 583-592 (2006). 16. Distler, J.H., et al. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50, 10-23 (2004). 17. Le, Q.T., Denko, N.C. & Giaccia, A.J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23, 293-310 (2004). 18. Semenza, G.L. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405-406 (2004). 19. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5, 343-354 (2004). 20. Carmeliet, P., et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490 (1998). 21. Kizaka-Kondoh, S., Tanaka, S., Harada, H. & Hiraoka, M. The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 61, 623-632 (2009). 22. Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721-732 (2003). 23. Bristow, R.G. & Hill, R.P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8, 180-192 (2008). 24. Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38-47 (2002). 25. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389-395 (2000). 26. Hillen, F. & Griffioen, A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26, 489-502 (2007). 27. Murdoch, C., Muthana, M., Coffelt, S.B. & Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618-631 (2008). 28. Risau, W. Mechanisms of angiogenesis. Nature 386, 671-674 (1997). 29. Bergers, G. & Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401-410 (2003). 30. Shpitz, B., et al. Angiogenic switch in earliest stages of human colonic tumorigenesis. Anticancer Res 23, 5153-5157 (2003). 31. McBride, W.H., et al. A sense of danger from radiation. Radiat Res 162, 1-19 (2004). 32. Klopp, A.H., et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67, 11687-11695 (2007). 33. Zielske, S.P., Livant, D.L. & Lawrence, T.S. Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys 75, 843-853 (2009). 34. Bentzen, S.M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6, 702-713 (2006). 35. Kim, T.D., et al. Radiation-induced thymidine phosphorylase upregulation in rectal cancer is mediated by tumor-associated macrophages by monocyte chemoattractant protein-1 from cancer cells. Int J Radiat Oncol Biol Phys 73, 853-860 (2009). 36. Chen, F.H., et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res 15, 1721-1729 (2009). 37. Dewhirst, M.W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8, 425-437 (2008). 38. Kowanetz, M. & Ferrara, N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12, 5018-5022 (2006). 39. Moeller, B.J., et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8, 99-110 (2005). 40. Karar, J. & Maity, A. Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther 8, 1994-2001 (2009). 41. De Palma, M. & Naldini, L. Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 1766, 159-166 (2006). 42. Tan, B.T., Lee, M.M. & Ruan, R. Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol 509, 167-179 (2008). 43. Pittenger, M.F., Mosca, J.D. & McIntosh, K.R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251, 3-11 (2000). 44. Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74 (1997). 45. De Palma, M., et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211-226 (2005). 46. Grunewald, M., et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175-189 (2006). 47. Heissig, B., et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625-637 (2002). 48. Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2, 826-835 (2002). 49. Chan, D.A., et al. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15, 527-538 (2009). 50. Du, R., et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206-220 (2008). 51. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H.W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527-2534 (1989). 52. Sunderkotter, C., et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172, 4410-4417 (2004). 53. Ingersoll, M.A., et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10-19 (2010). 54. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-727 (2006). 55. Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8, 533-544 (2008). 56. Gieryng, A. & Bogunia-Kubik, K. [The role of the SDF-1-CXCR4 axis in hematopoiesis and the mobilization of hematopoietic stem cells to peripheral blood]. Postepy Hig Med Dosw (Online) 61, 369-383 (2007). 57. Zhang, J., Lu, Y. & Pienta, K.J. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 102, 522-528 (2010). 58. Vu, T.H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14, 2123-2133 (2000). 59. De Palma, M., et al. Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299-311 (2008). 60. Allavena, P., Sica, A., Solinas, G., Porta, C. & Mantovani, A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66, 1-9 (2008). 61. Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4, 71-78 (2004). 62. Bosco, M.C., et al. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology 213, 733-749 (2008). 63. Imhof, B.A. & Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4, 432-444 (2004). 64. Gatenby, R.A. & Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891-899 (2004). 65. Lum, J.J., et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21, 1037-1049 (2007). 66. Rahat, M.A., et al. Hypoxia reduces the output of matrix metalloproteinase-9 (MMP-9) in monocytes by inhibiting its secretion and elevating membranal association. J Leukoc Biol 79, 706-718 (2006). 67. Roiniotis, J., et al. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182, 7974-7981 (2009). 68. Stout, R.D., et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175, 342-349 (2005). 69. Kusser, K.L. & Randall, T.D. Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues. J Histochem Cytochem 51, 5-14 (2003).
|