跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅紹華
論文名稱:探討小鼠骨髓細胞與單核球在放射治療後再復發腫瘤中扮演的角色
論文名稱(外文):The Role of Bone Marrow-Derived Cells and Monocytes in Post-Irradiated Recurring Tumors
指導教授:江啟勳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:90
中文關鍵詞:單核球骨髓細胞再復發腫瘤缺氧環境放射治療
外文關鍵詞:MonocyteBMDCsRecurring prostate tumorHypoxiaRadiation therapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
實驗室先前的研究發現,腫瘤在經過放射治療後會改變微環境中巨噬細胞像缺氧區聚集的現象,利用高度聚集於腫瘤環境的巨噬細胞作為藥物載體,可能會有提升治療效果的潛力。為了探討這個可行性,本研究利用實驗室先前建立的臨床前放射治療後攝護癌(TRAMP-C1)再復發模型,在放射治療前24小時尾靜脈注射帶有綠色螢光蛋白(EGFP)的骨髓細胞與其由體外分化的單核球,分別在治療後一天、一周、兩周和三周,利用流式細胞儀與免疫螢光染色分析骨髓細胞和單核球在周邊血與腫瘤微環境中聚集趨勢。實驗結果發現骨髓細胞和單核球皆在注射後一週有最大數量滲透聚集於腫瘤微環境中,且經過放射治療比正常的微環境更為顯著,但在缺氧區域並沒有明顯聚集。為了釐清缺氧環境對單核球移動能力的影響,在單核球體外分化過程中分別給予24、48和72小時的缺氧條件,結果顯示缺氧化單核球在移動能力上的確有所抑制,不同程度的缺氧化在細胞表現特徵也有所差異。由於放療後的腫瘤微環境確實有大量單核球滲透聚集,我們認為單核球具有做為細胞載體以提升放射治療效果的潛力。
Previous studies have known that radiotherapy could course the aggregation of macrophages in hypoxia areas. We hypothesize that the tumor-homing ability of tumor-associated macrophages (TAM) rendered it as a potential cellular carrier. To investigate this hypothesis, we used an established pre-clinical recurring prostate tumor (TRAMP-C1) model to study the infiltration pattern of bone marrow derived cells (BMDCs). 24 hours before the irradiation, 2×106 BMDCs or differentiated monocytes- expressing EGFP were injected i.v. The peripheral bloods and tumor microenvironment were analyzed by the flow cytometry and immunofluorescence staining. The results show that the largest number of BMDCs and monocytes infiltrated into tumor microenvironment occurred 1 week after cell injection, which was more notable in irradiated tumor, but not found at hypoxia regions. To investigate the hypoxic effect for migrated ability of monocytes, monocytes were differentiated in hypoxia conditions (2% O2) for the duration of 24, 48 or 72 hours. The results show that the migration rate of monocyts was restrained under hypoxia conditions, and the degrees of hypoxia condition have different effects on monocytes differentiation. The significant recruitment of monocytes into irradiated tumor microenvironment suggests that monocytes could be a potential cellular carrier for target therapy to enhance the efficiency of radiotherapy.
第一章、緒論
1.1 攝護腺瘤
1.1.1 攝護腺瘤簡介
1.1.2 攝護腺癌的臨床診斷
1.1.3 攝護腺癌的臨床治療
1.2 腫瘤微環境與放射治療
1.2.1 腫瘤微環境簡介
1.2.2腫瘤缺氧性區域與再復發
1.2.3血管新生
1.2.2 放療後的腫瘤微環境
1.3 骨髓細胞與單核球
1.3.1 骨髓細胞簡介
1.3.2 骨髓細胞與腫瘤微環境
1.3.3 單核球簡介
1.3.4 單核球與腫瘤微環境
1.3.5 單核球和缺氧性區域
1.4 研究目的與內容
第二章、材料與方法
2.1 細胞培養
2.1.1 配製DMEM細胞培養液
2.1.2 配製RPMI-1640細胞培養液
2.1.3 細胞培養液的配方
2.1.4 細胞繼代
2.1.5 細胞上清液(Condition Medium)收集
2.2 小鼠骨髓細胞萃取與單核球分化
2.2.1 動物來源
2.2.2 小鼠骨髓細胞萃取
2.2.3 單核球分化
2.3 動物實驗
2.3.1 動物來源
2.3.2 腫瘤植入
2.3.3 放射治療
2.3.4 動物分組
2.3.5 動物犧牲
2.4.6 周邊血萃取
2.4.7 螢光固定與腫瘤組織包埋
2.4.8 腫瘤細胞均質化
2.4.9 流式細胞儀分析
2.4.10 腫瘤組織冷凍切片
2.4.11 組織免疫螢光染色
2.4 體外缺氧實驗
2.4.1 缺氧條件
2.4.2 細胞分組
2.4.3 細胞存活分析 (Survival)
2.5 細胞移動實驗 (此實驗由胡桓軒同學協助完成)
2.5.1 條件培養液製備
2.5.2 實驗分組
2.5.3 實驗流程
第三章、實驗結果
3.1 骨髓細胞滲透分析
3.1.1 骨髓細胞定性分析
3.1.2 周邊血分析
3.1.3 腫瘤微環境分析
3.1.4 放射照射後注射分析
3.1.5 器官分析
3.2 單核球滲透分析
3.2.1 單核球定性分析
3.2.2 周邊血分析
3.2.3 腫瘤微環境分析
3.2.4 加強注射分析
3.3 缺氧化實驗
3.3.1 腫瘤缺氧微環境分析
3.3.2 缺氧化單核球生存曲線與定性分析
3.3.3 缺氧化單核球移動能力分析
第四章、結論與討論
第五章、圖表與說明
附錄
參考資料
1. 行政院衛生署. 2008年死因統計結果分析. (2010).
2. Kingsley, L.A., Fournier, P.G., Chirgwin, J.M. & Guise, T.A. Molecular biology of bone metastasis. Mol Cancer Ther 6, 2609-2617 (2007).
3. Ye, L., Kynaston, H.G. & Jiang, W.G. Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med 20, 103-111 (2007).
4. Yin, J.J., Pollock, C.B. & Kelly, K. Mechanisms of cancer metastasis to the bone. Cell Res 15, 57-62 (2005).
5. Horsman, M.R. & Overgaard, J. Overcoming tumour radiation resistance resulting from acute hypoxia. Eur J Cancer 28A, 2084-2085 (1992).
6. Ivnitskii, I. & Moiseev, N. [Resistance of mice to hypoxia of various types and to X-ray radiation in the post-hypoxic period]. Kosm Biol Aviakosm Med 24, 32-34 (1990).
7. Hede, K. Environmental protection: studies highlight importance of tumor microenvironment. J Natl Cancer Inst 96, 1120-1121 (2004).
8. Sung, S.Y. & Chung, L.W. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70, 506-521 (2002).
9. Frisch, S.M. & Screaton, R.A. Anoikis mechanisms. Curr Opin Cell Biol 13, 555-562 (2001).
10. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315, 1650-1659 (1986).
11. Bonfil, R.D., Chinni, S., Fridman, R., Kim, H.R. & Cher, M.L. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol 25, 407-411 (2007).
12. Virk, M.S. & Lieberman, J.R. Tumor metastasis to bone. Arthritis Res Ther 9 Suppl 1, S5 (2007).
13. Whiteside, T.L. The Local Tumor Microenvironment. In: Kaufmann H, Wolchok JD (eds). General Principles of Tumor Immunotherapy: Basic and Clinical Applications of Tumor Immunology, 145–167 (2007).
14. Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705-713 (2008).
15. Minchinton, A.I. & Tannock, I.F. Drug penetration in solid tumours. Nat Rev Cancer 6, 583-592 (2006).
16. Distler, J.H., et al. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50, 10-23 (2004).
17. Le, Q.T., Denko, N.C. & Giaccia, A.J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23, 293-310 (2004).
18. Semenza, G.L. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405-406 (2004).
19. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5, 343-354 (2004).
20. Carmeliet, P., et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490 (1998).
21. Kizaka-Kondoh, S., Tanaka, S., Harada, H. & Hiraoka, M. The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 61, 623-632 (2009).
22. Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721-732 (2003).
23. Bristow, R.G. & Hill, R.P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8, 180-192 (2008).
24. Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38-47 (2002).
25. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389-395 (2000).
26. Hillen, F. & Griffioen, A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26, 489-502 (2007).
27. Murdoch, C., Muthana, M., Coffelt, S.B. & Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618-631 (2008).
28. Risau, W. Mechanisms of angiogenesis. Nature 386, 671-674 (1997).
29. Bergers, G. & Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401-410 (2003).
30. Shpitz, B., et al. Angiogenic switch in earliest stages of human colonic tumorigenesis. Anticancer Res 23, 5153-5157 (2003).
31. McBride, W.H., et al. A sense of danger from radiation. Radiat Res 162, 1-19 (2004).
32. Klopp, A.H., et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67, 11687-11695 (2007).
33. Zielske, S.P., Livant, D.L. & Lawrence, T.S. Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys 75, 843-853 (2009).
34. Bentzen, S.M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6, 702-713 (2006).
35. Kim, T.D., et al. Radiation-induced thymidine phosphorylase upregulation in rectal cancer is mediated by tumor-associated macrophages by monocyte chemoattractant protein-1 from cancer cells. Int J Radiat Oncol Biol Phys 73, 853-860 (2009).
36. Chen, F.H., et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res 15, 1721-1729 (2009).
37. Dewhirst, M.W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8, 425-437 (2008).
38. Kowanetz, M. & Ferrara, N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12, 5018-5022 (2006).
39. Moeller, B.J., et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8, 99-110 (2005).
40. Karar, J. & Maity, A. Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther 8, 1994-2001 (2009).
41. De Palma, M. & Naldini, L. Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 1766, 159-166 (2006).
42. Tan, B.T., Lee, M.M. & Ruan, R. Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol 509, 167-179 (2008).
43. Pittenger, M.F., Mosca, J.D. & McIntosh, K.R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251, 3-11 (2000).
44. Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74 (1997).
45. De Palma, M., et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211-226 (2005).
46. Grunewald, M., et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175-189 (2006).
47. Heissig, B., et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625-637 (2002).
48. Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2, 826-835 (2002).
49. Chan, D.A., et al. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15, 527-538 (2009).
50. Du, R., et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206-220 (2008).
51. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H.W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527-2534 (1989).
52. Sunderkotter, C., et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172, 4410-4417 (2004).
53. Ingersoll, M.A., et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10-19 (2010).
54. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-727 (2006).
55. Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8, 533-544 (2008).
56. Gieryng, A. & Bogunia-Kubik, K. [The role of the SDF-1-CXCR4 axis in hematopoiesis and the mobilization of hematopoietic stem cells to peripheral blood]. Postepy Hig Med Dosw (Online) 61, 369-383 (2007).
57. Zhang, J., Lu, Y. & Pienta, K.J. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 102, 522-528 (2010).
58. Vu, T.H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14, 2123-2133 (2000).
59. De Palma, M., et al. Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299-311 (2008).
60. Allavena, P., Sica, A., Solinas, G., Porta, C. & Mantovani, A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66, 1-9 (2008).
61. Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4, 71-78 (2004).
62. Bosco, M.C., et al. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology 213, 733-749 (2008).
63. Imhof, B.A. & Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4, 432-444 (2004).
64. Gatenby, R.A. & Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891-899 (2004).
65. Lum, J.J., et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21, 1037-1049 (2007).
66. Rahat, M.A., et al. Hypoxia reduces the output of matrix metalloproteinase-9 (MMP-9) in monocytes by inhibiting its secretion and elevating membranal association. J Leukoc Biol 79, 706-718 (2006).
67. Roiniotis, J., et al. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182, 7974-7981 (2009).
68. Stout, R.D., et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175, 342-349 (2005).
69. Kusser, K.L. & Randall, T.D. Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues. J Histochem Cytochem 51, 5-14 (2003).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文