(3.231.166.56) 您好!臺灣時間:2021/03/08 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃靖雯
論文名稱:建立PPP-in-tubeSPE-ICP-MS連線分析系統進行活體動物肝臟細胞間液中奈米銀粒子的連續動態監測分析研究
論文名稱(外文):Online In-tube Solid Phase Extraction Coupled with Push-pull Perfusion Sampling and ICP-MS Determination for in vivo Monitoring Extracellular Silver anoparticles in Rat Liver
指導教授:孫毓璋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:117
中文關鍵詞:感應耦合電漿質譜儀抽壓導管固相萃取奈米銀粒子活體
外文關鍵詞:ICP-MSpush-pull perfusionsolid phase extractionsilver nanoparticlesin vivo
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,隨著奈米科技的蓬勃發展,奈米科技相關產品已廣泛地進入我們的生活周遭。由於奈米銀粒子具有相當優異的抗菌效果,所以在市面上奈米相關的商品中,從創傷敷料、襪子,甚至到食物保鮮盒等,都可以發現含奈米銀粒子的產品;含奈米銀粒子的產品亦已成為目前奈米相關產品當中佔有率最大者,其市佔率約為50%。然而,雖然奈米銀粒子已廣泛地被應用於生活當中,但因為受限於分析技術,目前文獻中有關動物體內奈米銀粒子的毒理動力學與風險評估的資訊仍相當缺乏。
為了獲得活體動物體內奈米銀粒子濃度的動態變化資訊,本研究建立了一套操作簡單的自動化連線分析系統,該系統中包含了活體抽壓導管採樣技術、奈米銀粒子管內固相萃取技術以及感應耦合電漿質譜儀的偵測技術。在動物實驗過程當中,本研究係由肝臟中採集奈米銀粒子,經由PTFE管進行萃取以達到與複雜生物基質分離之目的,最終則係以ICP-MS進行連續的偵測。
本研究在完成系統的最適化參數探討後,即根據最適化之條件進行連線系統的分析效能測試;實驗結果顯示,本研究所建立之連線分析系統之偵測極限可達0.64 μg/L。在分析可信度確認方面,本研究係將奈米銀粒子添加於模擬生物體液樣品中進行分析;結果顯示,利用所建立之分析技術確實可準確地測定含高濃度生物基質樣品中奈米銀粒子的濃度。此外,根據本研究實際進行大鼠肝臟細胞外液間奈米銀粒子濃度連續監測的結果顯示,本研究所建立之PPP-in-tube SPE-ICP-MS確實具有長時間監測活體動物體內奈米銀粒子動態變化趨勢的可行性。

Recently, the massive progression of nanotechnology has led a large number of applications and consumer goods. Around 50% of nanotechnology-based consumer products were made of silver nanoparticles (AgNPs), making them applicable to wound dressings, socks, and food containers due to the effective inhibition of growth in various microorganisms. Being applied for human use, however, the biokinetic and risk of AgNPs in mammal were rarely assessed, because there is still lack of an adequate analytical technique can provide dynamic information of AgNPs in mammal up to now.
To in vivo monitoring of AgNPs in the extracellular fluids of rat liver, we developed an unsophisticated, automatic, and online hyphenated system comprising push-pull perfusion (PPP) sampling, the established in-tube solid phase extraction (SPE) procedure, and inductively coupled plasma mass spectrometry (ICP-MS) in this study. This system takes advantage of adsorbing AgNPs onto the inner wall of polytetrafluoroethylene (PTFE) tubing which means AgNPs can be extracted from the complicated biological matrix. To optimize the analytical performance, the effect of sampling flow rate, sample loading flow rate, sample pH, tubing inner diameter and blood matrix were investigated. It has been demonstrated that under the optimized conditions, the detection limit of analyte AgNPs were found in the range of sub–?慊/L. The accuracy of our proposed system was confirmed by analyzing biological samples spiking with defined amounts of AgNPs to demonstrate its validity. After the validation of this method, the applicability of our developed system was further demonstrated by in vivo monitoring the dynamic variation in the concentrations of AgNPs in the liver of anesthetized rats after intravenous dosing.

中文摘要 ……………………………………………………… I
英文摘要 ……………………………………………………… III
謝誌 …………………………………………………………… V
目錄 …………………………………………………………… VII
圖目錄 ………………………………………………………… XI
表目錄 ………………………………………………………… XV

第一章 前言 ………………………………………………… 1
1.1 奈米銀粒子與生活 ………………………………… 1
1.2 奈米銀粒子引發的健康效應 ……………………… 6
1.2.1 皮膚暴露 ………………………………… 8
1.2.2 呼吸暴露 ………………………………… 11
1.2.3 攝食暴露 ………………………………… 12
1.2.4 細胞毒性 ………………………………… 13
1.2.5 水生物毒性 ……………………………… 15
1.3 測定奈米粒子在活體動物中動態變化的重要性 … 17
1.4 研究目的及方法 …………………………………… 24

第二章 儀器分析及原理 …………………………………… 25
2.1 抽壓導管取樣法(Push-Pull Perfusion, PPP)… 25
2.2 PTFE 管前濃縮分離裝置 …………………………… 28
2.3 感應耦合電漿質譜儀(ICP-MS) …………………… 29
2.3.1 樣品導入系統 …………………………… 30
2.3.2 感應耦合電漿離子源 …………………… 34
2.3.3 離子透鏡 ………………………………… 37
2.3.4 四極柱質量分析器 ……………………… 40
2.3.5 離子偵測 ………………………………… 42
2.4 動態光散射粒徑分析儀(DLS) …………………… 44

第三章 實驗 …………………………………………………… 49
3.1 抽壓導管取樣法與高鹽基質中奈米銀粒子萃取之連線
分析系統(PPP-in-tube SPE-ICP-MS)…………… 49
3.1.1 儀器裝置 ………………………………… 49
3.1.2 實驗藥品與試劑 ………………………… 51
3.1.3 實驗環境及用水 ………………………… 52
3.1.4 容器清洗 ………………………………… 53
3.1.5 活體動物之基本資料及來源 …………… 53
3.2 抽壓導管(Push-Pull Perfusion)的製備、清洗與保存 54
3.3 固相萃取(SPE)之中空PTFE管管柱的清洗與保存 54
3.4 PPP-in-tube SPE-ICP-MS連線系統之建立與條件探討 55
3.4.1 PPP-in-tube SPE-ICP-MS連線系統之建立 55
3.4.2 藥品、溶液配製 ………………………… 55
3.4.3 系統最佳化條件探討 …………………… 59
3.4.4 血液基質中奈米銀粒子分析之可行性探討 61
3.4.5 PPP- in-tube SPE-ICP-MS連線系統之分析效能
評估 ……………………………………… 62
3.5 PPP-in-tube SPE-ICP-MS 連線系統應用於活體(in
vivo)動物肝臟中奈米銀粒子的線上動態分析 … 63

第四章 結果與討論 ………………………………………… 64
4.1 奈米銀粒子配製程序探討及定性分析 …………… 64
4.1.1 奈米銀粒子配製程序 …………………… 64
4.1.2 奈米銀粒子長時間穩定度 ……………… 70
4.1.3 離體(in vitro)之長時間穩定度 …… 73
4.2 PPP-in-tube SPE-ICP-MS 連線系統的建立 ……… 75
4.2.1 中空PTFE管吸附奈米銀粒子之機制探討 75
4.2.2 抽壓導管(PPP)取樣法操作參數探討 …78
4.2.3 中空PTFE管吸附條件之最佳化探討 ……80
4.2.3.1 樣品流速對吸附效率的影響 … 81
4.2.3.2 樣品pH値對吸附效率的影響 … 82
4.2.3.3 中空PTFE管內徑對吸附效率的影響85
4.2.4 血液基質中奈米銀粒子分析之可行性探討 86
4.3 PPP-in-tube SPE-ICP-MS 連線系統之分析效能評估 88
4.3.1 線性關係與偵測極限 …………………… 90
4.3.2 準確度及精密度 ………………………… 90
4.3.3 連線分析系統長時間穩定性 …………… 91
4.4 利用PPP-in-tube SPE-ICP-MS 連線系統進行活體(in
vivo)動物肝臟中奈米銀粒子的線上動態分析 … 92
4.5 動物肝臟中奈米銀粒子存在狀態的鑑定 ………… 96

第五章 結論 ………………………………………………… 100
第六章 未來展望 …………………………………………… 103
第七章 參考文獻 …………………………………………… 107
1. 美國新興奈米科技研究計畫The Project on Emerging Nanotechnologies (PEN), http://www.nanotechproject.org/
2. Klasen, H. J. A historical review of the use of silver in the treatment of burns. II. renewed interest for silver. Burns 2000, 26, 131-138.
3. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000, 52, 662-668.
4. Richards, R. M.; Odelola, H. A.; Anderson, B. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios. 1984, 39, 151-157.
5. Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009, 27, 76-83.
6. Aymonier, C.; Schlotterbeck, U.; Antonietti, L.; Zacharias, P.; Thomann, R.; Tiller, J. C.; Mecking, S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun. 2002, 24, 3018-3019.
7. Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177-182.
8. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346-2353.
9. Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712-1720.
10. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y.; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 2007, 3, 95-101.
11. Benn, T. M.; Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 7025-7026.
12. Geranio, L.; Heuberger, M.; Nowack, B. The behavior of silver nanotextiles during washing. Environ. Sci. Technol. 2009, 43, 8113-8118.
13. Kandlikar, M.; Ramachandran, G.; Maynard, A.; Murdock, B.; Toscano, W. A. Health risk assessment for nanoparticles: A case for using expert judgment. J. Nanopar. Res. 2007, 9, 137-156.
14. Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005, 113, 823-839.
15. 謝俊明,奈米銀皮膚接觸暴露評估技術,勞工安全衛生簡訊,第87期,10-11。
16. Larese, F. F.; D'Agostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009, 255, 33-37.
17. Tinkle, S. S.; Antonini, J. M.; Rich, B. A.; Roberts, J. R.; Salmen, R.; DePree, K.; Adkins, E. J. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect. 2003, 111, 1202-1208.
18. Alvarez-Román, R.; Naik, A.; Kalia, Y. N.; Guy, R. H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004, 99, 53-62.
19. Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001, 109, 547-551.
20. 中華民國行政院環境保護署環保法規資料中心 http://law.epa.gov.tw/zh-tw/laws/359367440.html
21. 美國環境保護局(U.S. Environmental Protection Agency)http://www.epa.gov/safewater/contaminants/index.html
22. Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D.; Choi, B. S.; Lim, R.; Chang, H. K.; Chung, Y. H.; Kwon, I. H.; Jeong, J.; Han, B. S.; Yu, I. J. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008, 20, 575-83.
23. Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622-627.
24. Miura, N.; Shinohara, Y. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun. 2009, 390, 733-737.
25. Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, DA.; Hoffmann, HJ.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009, 190, 156-162.
26. Kim, S.; Choi, J. E.; Choi, J.; Chung, K. H.; Park, K.; Yi, J.; Ryu, D. Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 2009, 23, 1076-1084.
27. Park, E. J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro. 2010, 24, 872-878.
28. AshaRani, P.V.; Low Kah Mun G.; Hande M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009, 3, 279-290.
29. Rosas-Hernández, H.; Jiménez-Badillo, S.; Martínez-Cuevas, P. P.; Gracia-Espino, E.; Terrones, H.; Terrones, M.; Hussain, S. M.; Ali, S. F.; González, C. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett. 2009, 191, 305-313.
30. Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Nancy Xu, X. H. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano. 2007, 1, 133-143.
31. Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102.
32. Wu, Y.; Zhou, Q.; Li, H.; Liu, W.; Wang, T.; Jiang, G. Effects of Silver Nanoparticles on the development and histopathology biomarkers of Japanese Medaka (Oryzias latipes) using the partial-life Test. Aquat Toxicol. 2009, Article in Press
33. Fischer, H. C.; Chan, W. C. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007, 18, 565-571.
34. Schipper, M. L.; Cheng, Z.; Lee, S. W.; Bentolila, L. A.; Iyer, G.; Rao, J.; Chen, X.; Wu, A. M.; Weiss, S.; Gambhir, S. S. microPET-Based biodistribution of quantum dots in living mice. J. Nucl Med. 2007, 48, 1511-1518.
35. Woodward, J. D.; Kennel, S. J.; Mirzadeh, S.; Dai, S.; Wall, J. S.; Richey, T.; Avenell, J.; Rondinone, A. J. In vivo SPECT/CT imaging and biodistribution using radioactive Cd125mTe/ZnS nanoparticles. Nanotechnology 2007, 18, 175103.
36. Morgan, N. Y.; English, S.; Chen, W.; Chernomordik, V.; Russo, A.; Smith, P. D.; Gandjbakhche, A. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol. 2005, 12, 313-323.
37. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004, 22, 969-976.
38. Yang, R. S.; Chang, L. W.; Wu, J. P.; Tsai, M. H.;Wang, H. J.; Kuo, Y. C.; Yeh, T. K.; Yang, C. S.; Lin, P. Persistent tissue kinetics and redistribution of nanoparticles quantum dot 705 in mice: ICP-MS quantitative assessment. Environ Health Perspect. 2007, 115, 1339-1343.
39. Garza-Ocanas, L.; Ferrer, D. A.; Burt, J.; Diaz-Torres, L. A.; Cabrera, M. R.; Rodríguez, V. T.; Rangel, R. L.; Romanovicz, D.; Jose-Yacaman, M. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2010, 2, 204-210.
40. Chung, Y. T.; Ling, Y. C.; Yang, C. S.; Sun, Y. C.; Lee, P. L.; Lin, C. Y.; Hong, C. C.; Yang, M. H. In vivo monitoring of multiple trace metals in the brain extracellular fluid of anesthetized rats by microdialysis -membrane desalter-ICPMS. Anal. Chem. 2007, 97, 8900-8910.
41. Lu, Y. W.; Sun, Y. C. Online in-tube solid phase extraction coupled to ICP-MS for in vivo determination of the transfer kinetics of trace elements in the brain extracellular fluid of anesthetized rats. J. Anal. At. Spectrom. 2007, 22, 77-83.
42. Su, C. K.; Li, T. W.; Sun, Y. C. Online in-tube solid phase extraction using a nonfunctionalized PVC tube coupled with ICPMS for in vivo monitoring of trace metals in rat brain microdialysates. Anal. Chem. 2008, 80, 6959-6967.
43. Fox, R. H.; Hilton, S. M. Bradykinin formation in human skin as a factor in heat vasodilatation. J. Physiol. 1958, 142, 21-232.
44. Delgado, J. M.; DeFeudis, F. V.; Roth, R. H.; Ryugo, D. K.; Mitruka, B. M. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther. 1972, 198, 9-21.
45. Chaurasia, C. S.; Müller, M.; Bashaw, E. D.; Benfeldt, E.; Bolinder, J.; Bullock, R.; Bungay, P. M.; DeLange, E. C.; Derendorf, H.; Elmquist, W. F.; Hammarlund-Udenaes, M.; Joukhadar, C.; Kellogg, D. L.; Jr.; Lunte, C. E.; Nordstrom, C. H.; Rollema, H.; Sawchuk, R. J.; Cheung, B. W.; Shah, V. P.; Stahle, L.; Ungerstedt, U.; Welty, D. F.; Yeo, H. AAPS-FDA workshop white paper: microdialysis principles, application, and regulatory perspectives report from the joint AAPS-FDA workshop, November 4-5, 2005, Nashville, TN. AAPS J. 2007, 9, 48-59.
46. Yang, C. S.; Chang, C. H.; Tsai, P. J.; Chen, W. Y.; Tseng, F. G.; Lo, L. W. Nanoparticle-based in vivo investigation on blood−brain barrier permeability following ischemia and reperfusion. Anal. Chem. 2004, 76, 4465-4471.
47. Ainslie, K. M.; Bachelder, E. M.; Borkar, S.; Zahr, A. S.; Sen, A.; Badding, J. V.; Pishko, M. V. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). Langmuir 2007, 23, 747-754.
48. Ozeki, K.; Nagashima, I.; Hirakuri, K. K.; Masuzawa, T. Adsorptive properties of albumin, fibrinogen, and γ-globulin on fluorinated diamond-like carbon films coated on PTFE. J Mater Sci Mater Med. 2010, 21, 1641-1648.
49. Zardeneta, G.; Mukai, H.; Marker, V.; Milam, S. B. Protein interactions with particulate Teflon: implications for the foreign body response. J Oral Maxillofac Surg. 1996, 54, 873-878.
50. Ravindran, A.; Singh, A.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A. Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surf B Biointerfaces 2010, 76, 32-37.
51. Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Knag, M. K.; Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303-9307.
52. Lacerda, S. H.; Park, J. J.; Meuse, C.; Pristinski, D.; Becker, M. L.; Karim, A.; Douglas, J. F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2010, 4, 365-379.
53. Lynch, I.; Dawson, K. A. Protein-nanoparticle interactions. Nanotoday 2008, 3, 40-47.
54. Jarvis, K. E.; Gray, A. L.; Houk, R.S. Handbook of inductively coupled plasma mass spectrometry. Blackie, Glasgow, 1992
55. Taylor, H. E. Inductively coupled plasma mass spectrometry. Wiley-VCH, New-York, 2001
56. Todoli J. L.; Mermet, J. M. Elemental analysis of liquid microsamples through inductively coupled plasma spectrochemistry. TrAC-Trend Anal. Chem. 2005, 24, 107-116.
57. Guo, X.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J. Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Anal. Chem. 2004, 76, 2401-2405.
58. Sharp, B. L.; Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry. A review. Part 1. Nebulisers. J. Anal. Atom. Spectrom. 1988, 3, 613-652.
59. Douglas, D. J.; Quan, E. S. K.; Smith, R. G. Elemental analysis with an atmospheric pressure plasma (MIP, ICP)/quadrupole mass spectrometer system. Spectrochimica Acta Part B: Atomic Spectroscopy 1983, 38, 39-48.
60. Zetasizer Nano User Manual, Malvern Instruments Ltd
61. Bihari, P.; Vippola, M.; Schultes, S.; Praetner, M.; Khandoga, A. G.; Reichel, C. A.; Coester, C.; Tuomi, T.; Rehberg, M.; Krombach, F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol. 2008, 5, 14.
62. Murdock, R. C.; Braydich-Stolle, L.; Schrand, A. M.; Schlager, J. J.; Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008, 101, 239-253.
63. Tang, J. L.; Xiong, L.; Wang, S.; Wang, J. Y.; Liu, L.; Li, J.; Wan, Z. Y.; Xi, T. F. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Applied Srurface Science 2008, 255, 502-504.
64. Jans, H.; Liu, X.; Austin, L.; Maes, G.; Huo, Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem. 2009, 81, 9425-9432.
65. Ruzicka, J. Lab-on-valve: universal microflow analyzer based on sequential and bead injection. Analyst 2000, 125, 1053-1060.
66. Hanfor, W. E.; Joyce, R. M. Polytetrafluoroethylene. J. Am. Chem. Soc. 1946, 68, 2082-2085.
67. Nandi, P.; Lunte, S. M. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta. 2009, 651, 1-14.
68. Cellar, N. A.; Burns, S. T.; Meiners, J. C.; Chen, H.; Kennedy, R. T. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal. Chem. 2005, 77, 7067-7073.
69. 林晏鈴(2008),建立Microdialysis-In-tube SPE-ICP-MS 連線分析系統進行活體動物腦中微量元素的連續動態監測之分析研究, 國立清華大學生醫工程與環境科學系碩士論文
70. 陳威宇(2009),建立開管式固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行高鹽基質微透析樣品中微量元素之分析研究,國立清華大學生醫工程與環境科學系碩士論文
71. Gaur, U.; Sahoo, S. K.; De, T. K.; Ghosh, P. C.; Maitra, A.; Ghosh, P. K. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm. 2000, 202, 1-10.
72. Li, S. D.; Huang, L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009, 1788, 2259-2266.
73. Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004, 56, 1649-1659.
74. Diagaradjane, P.; Deorukhkar, A.; Gelovani, J. G.; Maru, D. M.; Krishnan, S. Gadolinium chloride augments tumor-specific imaging of targeted quantum dots in vivo. ACS Nano 2010, Articles ASAP.
75. Degueldre, C.; Favarger, P. Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 217, 137-142.
76. Degueldre, C.; Favarger, P. Y.; Wold, S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode . Anal Chim Acta. 2006, 555, 263-268.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 開發披覆式晶片型光觸媒輔助還原裝置串連高效能液相層析與感應耦合電漿質譜儀進行環境水樣中無機硒物種之分析研究
2. 活體動物體內量子點及鎘離子動態變化連線分析系統的開發與應用
3. 以LA-ICP-MS掃描圖譜技術分析環境樣品之研究
4. 利用金奈米粒子探針搭配電熱式原子吸收光譜儀測定汞離子的分析研究
5. 開發金奈米粒子生物光學感測器進行農藥篩檢之分析研究
6. 建立線上HPLC-Photocatalyst-AssistedDigestionandVaporizationDevice(PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
7. 開發Microdialysis-Desalter-ICP-MS連線分析系統進行活體動物肝臟中量子點穩定性及鎘元素拮抗作用之分析研究
8. 磁性奈米粒子及其複合材料之製備應用與氧化鋅奈米粒子細胞毒性之研究
9. 奈米銀粒子製備及其抗菌之研究
10. 奈米銀粒子誘導CL5肺腺癌細胞株細胞激素表現及環境毒物之生物效應
11. 利用奈米探針技術搭配感應耦合電漿質譜儀建立高靈敏的病毒分型及定量分析研究
12. 建立開管式固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行高鹽基質微透析樣品中微量元素之分析研究
13. 化學披覆奈米銀的二氧化矽微球與其抗菌效果之研究
14. 建立線上 HPLC-PMMA Chip-based Photo-Catalyst Reduction Device (PC2RD)-ICP-MS 連線系統進行環境水樣中硒物種之分析研究
15. 利用離體模式進行Microdialysis-microboreHPLC-UV/nano-TiO2photooxidation-pre-reduction-HG-ICPMS連續測定系統在現場、動態監測尿液中砷物種濃度變化之研究
 
系統版面圖檔 系統版面圖檔