跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家豪
研究生(外文):Chang, Chia-Hao
論文名稱:“DESIRE”效應在磁振顯微技術之研究
論文名稱(外文):“DESIRE” effect for MR microscopy
指導教授:王福年
指導教授(外文):Wang, Fu-Nien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:68
中文關鍵詞:核磁共振顯微技術擴散訊號及解析度增益影像擴散空間解析度訊號增益
外文關鍵詞:MR microscopyDESIREdiffusionspatial resolutionsignal enhancement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
要在合理時間內進行微米等級解析度的掃描時,核磁共振顯微技術的訊雜比一直是一個很大的限制。利用擴散現象增強訊號強度及解析度(Diffusion Enhancement of Signal and Resolution, DESIRE)的概念被提出後,訊雜比大約可以增加一個至三個數量級。在先前的研究中,模擬外加磁場的效應通常是使用疊代數值法計算,而擴散的效應則是利用有限微分法解Bloch-Torrey equation計算,這樣的模擬方法通常很耗時。在本實驗中,我們分別利用Shinnar-LeRoux演算法及基於旋積的擴散模擬方法來分別加速計算外加磁場及擴散對於磁振訊號的影響,可以節省大量運算時間,也讓二維DESIRE模擬可行。由模擬結果指出,我們可以使用射頻脈衝持續時間為零的飽和磁化向量代表持續時間不為零的情況在可接受合理誤差範圍內。我們也利用一維模擬結果預測在不同參數實驗中的有效解析度和訊號增益值,並找出最佳的參數值,在本實驗模擬結果指出Sinc3脈衝波形能同時兼顧良好的空間解析度及訊號增益值,對於總擴散時間為一秒時,施加100次Sinc3脈衝波形能得到最佳訊號增益值,也就是射頻脈衝的間隔為10 毫秒。由實驗結果中可得一維飽和剖繪圖及DESIRE影像也顯示出與模擬結果高度的相關性。對於在二維DESIRE影像中飽和一個圓柱體積來說,我們也提出梯度磁場系統需求的建議,並且指出除了梯度磁場強度之外,上升速率的硬體限制在二維實驗中也會有決定性的影響。
Within an advisable measurement time, the signal-to-noise ratio (SNR) is a major limitation of nuclear magnetic resonance (NMR) microscopy at the spatial resolution of micrometers level. The ‘‘Diffusion Enhancement of Signal and Resolution’’ (DESIRE) scheme provides potential signal enhancement about 1-3 order of magnitude enhancement. In the previous report, the calculations of external magnetic fields and diffusion propagation are simulated by iterative numerical optimization methods and finite-differential (FD) method of Bloch-Torrey equation, respectively. The disadvantage of these processes is time-consuming. In this work, the simulation of external magnetic fields is accelerated by Shinnar-LeRoux (SLR) algorithm and diffusion propagation is accelerated by convolution-based on diffusion simulation method. Thus, the time-cost of simulation can be saved, reducing especially for 2D DESIRE simulations. We can use the saturation magnetization profile with the pulse duration of zero to instead that of non-zero within acceptable error range. The 1D simulation results reveal the optimal parameters setting of restricted condition and predict the effective resolution and the enhancement of different parameters for experiments. The simulated results indicate the pulse waveform of Sinc3 has the both sufficient spatial resolution as well as enhancement in this study. As the total diffusion time is constant of 1 s, the optimal enhancement can be achieved using the pulse number of Sinc3 pulse of 100, namely a RF pulse interval of 10 ms. We also present the 1D saturation profiles and DESIRE images of experiments, and the enhancements of that have high degree agreement with simulated values. For saturating a cylinder volume of 2D DESIRE technique, the gradient system requirements are suggested using spiral gradient method. The simulated results reveal that the requirement of gradient slew rate is also a critical factor as the gradient strength.
List of Figures vii
List of Tables x
1 Introduction 1
2 Theory 3
2.1 Diffusion enhancement 3
2.2 Spatial resolution 4
2.3 Shinnar-Le Roux (SLR) algorithm 8
2.4 Random walk process 12
2.5 Molecular diffusion of NMR 14
2.6 K-space interpretation of small-tip excitation 15
3 Materials and methods 17
3.1 Bloch equation simulation 19
3.1.1 Matrix basics 19
3.1.2 Forward SLR transform 21
3.2 Diffusion simulation 22
3.2.1 Convolution-based method 22
3.2.2 Finite difference (FD) method 23
3.3 2D spiral gradient and RF pulse design 24
3.4 Experiments 29
3.4.1 1D DESIRE profiles 29
3.4.2 1D DESIRE images 30
4 Results 32
4.1 1D DESIRE simulations 32
4.1.1 Comparison of different pulse duration 32
4.1.2 Simulated magnetization profiles 36
4.1.3 The influences of the diffusion coefficient 40
4.1.4 The influences of the number of saturation pulses 43
4.1.5 The optimal parameters with relaxation 46
4.2 1D DESIRE experiments 47
4.2.1 Experimental magnetization profiles 47
4.2.2 Diffusion enhanced images of a plant stem 50
4.3 2D DESIRE simulations 51
4.3.1 Spiral gradients and RF pulse waveform 51
4.3.2 Simulated magnetization profiles and system requirements 54
5 Discussion 57
6 Conclusions 60
Appendix A 62
Bibliography 66

[1] C.G. Samuel, R.A. Nanci, H.D. Plant, G. Stephen, H.M. Thomas, G.W. Andrew, and J.B. Stephen, NMR spectroscopy of single neurons. Magnetic Resonance in Medicine 44 (2000) 19-22.
[2] S.C. Grant, D.L. Buckley, S. Gibbs, A.G. Webb, and S.J. Blackband, MR microscopy of multicomponent diffusion in single neurons. Magnetic Resonance in Medicine 46 (2001) 1107-1112.
[3] L. Ciobanu, A.G. Webb, and C.H. Pennington, Magnetic resonance imaging of biological cells. Progress in Nuclear Magnetic Resonance Spectroscopy 42 (2003) 69-93.
[4] L. Ciobanu, and C.H. Pennington, 3D micron-scale MRI of single biological cells. Solid State Nucl Magn Reson 25 (2004) 138-41.
[5] G. Paul, and M. Sir Peter, Limits to magnetic resonance microscopy. Reports on Progress in Physics 65 (2002) 1489.
[6] L. Ciobanu, High Resolution MR Microscopy, Department of Physics, Ohio State University, 2002.
[7] P.T. Callaghan, and C.D. Eccles, Diffusion-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 78 (1988) 1-8.
[8] C.B. Ahn, and Z.H. Cho, A generalized formulation of diffusion effects in micron resolution nuclear magnetic resonance imaging. Med Phys 16 (1989) 22-8.
[9] W.B. Hyslop, and P.C. Lauterbur, Effects of restricted diffusion on microscopic NMR imaging. J Magn Reson 94 (1991) 501-510.
[10] B. Putz, D. Barsky, and K. Schulten, Edge enhancement by diffusion: microscopic magnetic resonance imaging of an ultrathin glass capillary. Chem. Phys. Lett. 183 (1991) 391-396.
[11] B. Putz, D. Barsky, and K. Schulten, Edge enhancement by diffusion in microscopic magnetic resonance imaging. J Magn Reson 97 (1992) 27-53.
[12] P.T. Callaghan, A. Coy, L.C. Forde, and C.J. Rofe, Diffusive Relaxation and Edge Enhancement in NMR Microscopy. J Magn Reson 101 (1993) 347-350.
[13] P.C. Lauterbur, W.B. Hyslop, and H.D. Morris, NMR microscopy: old resolutions and new desires, International Society of Magnetic Resonance Conference, Vancouver, B.C, 1992, pp. 124.
[14] H.D. Morris, W.B. Hyslop, and P.C. Lauterbur, Diffusion-enhanced NMR microscopy, International Society of Magnetic Resonance Conference, San Francisco, 1994, pp. 376.
[15] C.H. Pennington, Prospects for diffusion enhancement of signal and resolution in magnetic resonance microscopy. Concepts in Magnetic Resonance Part A 19A (2003) 71-79.
[16] L. Ciobanu, A.G. Webb, and C.H. Pennington, Signal enhancement by diffusion: experimental observation of the "DESIRE" effect. J Magn Reson 170 (2004) 252-6.
[17] M. Weiger, Y. Zeng, and M. Fey, A closer look into DESIRE for NMR microscopy. J Magn Reson 190 (2008) 95-104.
[18] M.A. Bernstein, K.F. King, and Z.J. Zhou, Handbook of MRI pulse sequences, Elsevier Academic Press, Burlington, MA, 2004.
[19] H.C. Torrey, Bloch Equations with Diffusion Terms. Physical Review 104 (1956) 563-65.
[20] V.H. Subramanian, S.M. Eleff, S. Rehn, and J.J.S. Leigh, An exact synthesis procedure for frequency selective pulses, Proc. Intl. Soc. Mag. Reson. Med., 1985, pp. 1452-53.
[21] R.L. Liboff, Introductory quantum mechanics, Addison-Wesley, San Francisco, 2003.
[22] R.N. Bracewell, Fourier analysis and imaging, Kluwer Academic/Plenum Publishers, New York :, 2003.
[23] E.T. Jaynes, Matrix Treatment of Nuclear Induction. Physical Review 98 (1955) 1099-1105.
[24] H. Gudbjartsson, and S. Patz, NMR diffusion simulation based on conditional random walk. IEEE Trans Med Imaging 14 (1995) 636-42.
[25] J. Pauly, D. Nishimura, and A. Macovski, A k-space analysis of small-tip-angle excitation. J Magn Reson 81 (1989) 43-56.
[26] J. Pauly, P. Le Roux, D. Nishimura, and A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. IEEE Trans Med Imaging 10 (1991) 53-65.
[27] M. Shinnar, and J.S. Leigh, The application of spinors to pulse synthesis and analysis. Magn Reson Med 12 (1989) 93-8.
[28] M. Shinnar, S. Eleff, H. Subramanian, and J.S. Leigh, The synthesis of pulse sequences yielding arbitrary magnetization vectors. Magn Reson Med 12 (1989) 74-80.
[29] M. Shinnar, L. Bolinger, and J.S. Leigh, The synthesis of soft pulses with a specified frequency response. Magn Reson Med 12 (1989) 88-92.
[30] M. Shinnar, L. Bolinger, and J.S. Leigh, The use of finite impulse response filters in pulse design. Magn Reson Med 12 (1989) 81-7.
[31] H.C. Torrey, Transient Nutations in Nuclear Magnetic Resonance. Physical Review 76 (1949) 1059-68.
[32] P.Z. Gary, and H.F. Jack, Spin-echoes for diffusion in bounded, heterogeneous media: A numerical study. The Journal of Chemical Physics 72 (1980) 1285-1292.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王惠珠(2001,9月),〈公務人員考績制度改革芻議〉,《考銓季刊》,第28期,頁100-111。
2. 呂育誠(2006,11月),<英國中央公務員績效評量策略述評-以「高級行政職務」人員為例>,《人事月刊》,第255期,頁34-46。
3. 呂育誠(2003,11月),<公務人員考績法明定列等人數比例問題之研究>,《公務人員月刊》,第89期,頁31-51。
4. 林海清(2001,12月),<公務人員績效評估制度之探討>,《人事月刊》,第33卷第6期,頁6-18。
5. 余致力、曾德宜、陳志瑋(2003,11月),<我國公務人員考績制度改進之研究>,《公務人員月刊》,第89期,頁9-30。
6. 呂育誠(2007,11月),<公務人員激勵概念新詮:人力資本觀點>,《人事月刊》,第267期,頁51-59。
7. 林水波(2003,11月),<領導者的員工激勵角色>,《人事月刊》,第219期,頁7-19。
8. 余致力、胡龍騰(2006,9月),<建立組織導向之公務人員績效俸給制度>,《公務人員月刊》,第123期,頁5-11。
9. 余致力、蔡宗珍、陳志瑋(2001,12月),<公務人員考績制度的問題與對策>,《人事行政》,第138期,頁11-24。
10. 吳泰成(2005,7月),<建構績效導向的考績制度>,《考銓季刊》,第43期,頁1-10。
11. 吳泰成(2000,4月),<我國文官績效管理的回顧與前瞻>,《人事行政》,第171期,頁19-26。
12. 吳泰成(1996,1月),<公務人員考績制度改進芻議>,《考銓季刊》,第5期,頁9-17。
13. 邱志淳(2007,11月),<公務員激勵與行政效能提升的另類思考>,《人事月刊》,第267期,頁60-64。
14. 施能傑(1992),<考績謬誤的類型與原因:理論闡述與經驗分析>(上),《人事月刊》,第14卷第3期,頁4-12。
15. 施能傑(1992),<考績謬誤的類型與原因:理論闡述與經驗分析>(下),《人事月刊》,第14卷第4期,頁4-16。