|
1-10 References [1] Charles, B., "Purpose in the Universe: A Search for Wholeness", 1971, Zygon, 6, No.1, Pages 4-27, MAR. [2] U.S. Department of Energy, “Fuel Cell Handbook (Sixth Edition)”, 2002, Morgantown, West Virginia, Chapter 1. [3] Larminie, J., Dicks, A., “Fuel cell systems explained”, 2002, John Wiley & Sons, Chapter 1. [4] Hogarth, M. P., and Ralph, T. R., “Catalysis for Low Temperature Fuel Cells”, 2002, Platinum Metals Review, 46, 146-164. [5] Ralph, T. R., and Hards, G. A., “Powering the cars and homes of tomorrow”, 1998, Chemistry & Industry, 9, 337-342. [6] Bossel, U. G., “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, 1999, Lucerne, 79-84. [7] Zieger, J., 1994, Hydrogen energy progr. 10, 1427-1437. [8] Kahrom, H., “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, 1999, Lucerne, 159. [9] Reister, D., and Strobl, W., 1992, Hydrogen energy progress IX, 1202. [10] Ueoka, K., Miyauchi, S., Asakuma, Y., Hirosawa, T., Morozumi, Y., Aokia, H., and Miura, T., “An application of a homogenization method to the estimation of effective thermal conductivity of a hydrogen storage alloy bed considering variation of contact conditions between alloy particles”, 2007, International Journal of Hydrogen Energy, 32, 4225-4232. [11] Vermeulen, P., Thiel, E. F. M. J., and Notten, P. H. L., “Ternary MgTiX-alloys: A promising route towards low temperature, high capacity, hydrogen storage materials”, 2007, Chemistry -A European Journal, 13, 9892-9898. [12] Appleby, A. J., and Foulkes, F.R., “Fuel Cell Handbook”, 1989, Van Nostrand, New York, 177. [13] Watkins, D.S., in: Blomen, L.J.M.J., and Mugerwa, M.N. (Eds.), “Fuel Cell Systems”, 1993, Plenum Press, New York, 493. [14] J. Zieger, 1994, Hydrogen energy progress, 10, 1427-1437. [15] Kahrom, H., “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, 1999, Lucerne, 159. [16] Lindstrom, B., and Pettersson, L.J., “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, 2001, International Journal of Hydrogen Energy, 26, 923-933. [17] Rostrup-Nielsen, J. R., Christensen, T.S., and Dybkjaer, I., “Steam reforming of liquid hydrocarbons”,1998, Recent Advances In Basic And Applied Aspects Of Industrial Catalysis, 113, 81-95. [18] Takahashi, T., Inoue, M., and Kai, T., “Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys”, 2001, Applied Catalysis A: General, 218, 189-195. [19] Velu, S., Suzuki, K., and Osaki, T., “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, 1999, Catalysis Letter, 62, 159-167. [20] Wang, Z. F., Xi, J. Y., Wang, W. P., and Lu, G. X., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, 2003, Journal of Molecular Catalysis A: Chemistry., 191, 123-136. [21] Cubeiro, M. L., and Fierro, J. L. G., “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, 1998, Applied Catalysis A: General, 168, 307-322. [22] Schuyten, S., and Wolf, E.E., “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming”, 2006, Catalysis Letter, 106, 7-14. [23] Mo, L., Zheng, X., and Yeh, C.T., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, 2004, Chemical Communication, 1426-1427. [24] S. Velu, Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, 2003, Topics in Catalysis. 22, 235-244. [25] Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, 2003, Journal of Catalysis, 219, 389-403. [26] Turco, M., Bagnasco, G., Cammarano, C., Senese, P., Costantino, U., and Sisani, M., “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, 2007, Applied Catalysis B: Environmental, 77, 46–57. [27] Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, 2007, Journal of Molecular Catalysis A: Chemical, 268, 185-194. [28] Shishido, T., Yamamoto, M., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T., and Takehira, K., “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, 2006, Applied Catalysis A: General, 303, 62–71. [29] Patt, J., Moon, D. J., Phillips, C., and Thompson, L., “Molybdenum carbide catalysts for water–gas shift”, 2000, Catalysis Letter, 65, 193-195. [30] Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K., “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, 2002, Catalysis Today, 75, 157-167. [31] Wang, J. B., Lin, S. C., and Huang, T. J., “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, 2002, Applied Catalysis A: General, 232, 107-120. [32] Avgouropoulos, G., and Ioannides, T., “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method”, 2003, Applied Catalysis A: General, 244, 155-167. [33] Dyakonov, A. J., “Abatement of CO from relatively simple and complex mixtures - I. Oxidation on Pd-Ag/zeolite catalysts”, 2003, Applied Catalysis B: Environmental, 45, 241-309. [34] Qiao, B., and Deng, Y., “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2”, 1997, Chemical Communication, 2192-2193. [35] Han, Y. F., Kinne, M., and Behm, R. J., “Selective oxidation of CO on Ru/gamma-Al2O3 in methanol reformate at low temperatures”, 2004, Applied Catalysis B: Environmental, 52, 123-134. [36] Hunt, L. B., and Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses," 1969, Platinum Metals Review, 13, 126–138. [37] Liu, S., Takahashi, K., Uematsu, K., and Ayabe, M., “Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component” 2004, Applied Catalysis A: General, 277, 265–270 [38] Liu, S., Takahashi, K., Eguchi, H., and Uematsu, K., "Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials,” 2007, Catalysis Today, 129, 287–292 [39] Liu, S., Takahashi, K., Fuchigami, K., and Uematsu, K., “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation,” 2006, Applied Catalysis A: General, 299, 58–65 [40] Campbell, C. T., and Peden, C. H. F., “Oxygen Vacancies and Catalysis on Ceria Surfaces,” 2005, Science, 309, 713-714 [41] Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor,” 2004, Journal of Catalysis, 228, 43–55 [42] Urco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts,” 2004, Journal of Catalysis, 228, 56–65 [43] Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming,” 2007, Journal of Molecular Catalysis A: Chemical, 268, 185–194 [44] Shishido, T., Yamamoto, Y., Morioka, H., and Takehira, K., and Takaki, K., “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol,” 2004, Applied Catalysis A: General, 263, 249–253 [45] Ioannides, T., Papavasiliou, J., and Avgouropoulos, G. , “Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming,” 2007, Applied Catalysis B: Environmental, 69, 226–234 [46] Udani, P.P.C., Gunawardana, P.V.D.S., Lee, H. C., and Kim, D. H., “Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts;” 2009, International Journal of Hydrogen Energy, 34, 7648-7655. [47] Pant, K. K., and Patel, S., 2007, “Hydrogen Production by Oxidative Steam Reforming of Methanol Using Ceria Promoted Copper–alumina Catalysts,” Fuel Processing Technology, Vol. 88, pp. 825-832 [48] Chen, H., Yin, A., Guo, X., Dai, W. L., and Fan, K. N., “Sodium Hydroxide–Sodium Oxalate-Assisted Co-Precipitation of Highly Active and Stable Cu/ZrO2 Catalyst in the Partial Oxidation of Methanol to Hydrogen,” 2009, Catalysis Letter, 131, 632–642 [49] Omata, K., Umegaki, T., Masuda, A., and Yamada, M., “Development of a high performance Cu-based ternary oxide catalyst for oxidative steam reforming of methanol using an artificial neural network,” 2008, Applied Catalysis A: General, 351, 210–216 [50] Haruta, M., 1997, “Size- and Support-dependency in the Catalysis of Gold,” Catalysis Today, 36, 153-166 [51] Haruta, M., and Daté, M., 2001, “Advances in the Catalysis of Au Nanoparticles,” Applied Catalysis A: General, 222, 427–437 [52] Nørskov, J. K., Janssens, T. V. W., Clausen, B. S., Xu, Y., Mavrikakis, M., Bligaard, T., and Lopez, N., 2004, “On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-temperature CO Oxidation,” Journal of Catalysis, Vol. 223, pp. 232–235 [53] Manzoli, M., Avgouropoulos, G., Tabakova, T., Apavasiliou, J., Ioannides, T., and Boccuzzi, F., 2008, “Preferential CO Oxidation in H2-Rich Gas Mixtures Over Au/doped Ceria Catalysts,” Catalysis Today, Vol. 138, pp. 239–243 [54] Gazsi, A., Bánsági, T., Solymosi, F., “Hydrogen Formation in the Reactions of Methanol on Supported Au Catalysts,” 2009, Catalysis Letter, 131, 33–41 [55] Flytzani-Stephanopoulos, M., Yi, N., Si, R., and Saltsburg, H., “Steam reforming of methanol over ceria and gold-ceria nanoshapes,” 2010, Applied Catalysis B: Environmental, 95, 87–92 [56] Chang, F. W., Yu, H. Y., Roselin, L. S., and Yang, H. C, 2005, “Production of Hydrogen Via Partial Oxidation of Methanol over Au/TiO2 Catalysts,” Applied Catalysis A: General, Vol. 290, pp. 138–147 [57] Chang, F. W., Yang, H. C., and Roselin, L. S., 2007, “Hydrogen Production by Partial Oxidation of Methanol over Au/CuO/ZnO Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 276, pp. 184–190 [58] Chang, F. W., Lai, S. C., and Roselin, L. S., 2008a, “Hydrogen Production by Partial Oxidation of Methanol over ZnO-promoted Au/Al2O3 Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 282, pp. 129–135 [59] Chang, F. W., Ou, T. C., and Roselin, L. S., 2008b, “Production of Hydrogen Via Partial Oxidation of Methanol over Bimetallic Au–Cu/TiO2 Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 293, pp. 8–16 [60] Chang, F. W., Ou, T. C., Roselin, L. S., Chen, W. S., Lai, S. C., and Wu, H. M., 2009, “Production of Hydrogen Via Partial Oxidation of Methanol over Bimetallic Au–Cu/TiO2 Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 313, pp. 55–64
2-11 References [1] S. Brunauer, P. H. Emmtt, E. Teller, “A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant and the Application of Mixing Rules: The Study of Acetaminophen Batches”, J. Am. Chem. Soc. 60 (1938) 309-315. [2] S. Y. Huang, S. M. Chang, C. T. Yeh, “Characterization of surface composition of platinum and ruthenium nanoalloys dispersed on active carbon”, J. Phys. Chem. B 110 (2006) 234-239. [3] J. B. Wang, S. C. Lin, T. J. Huang, “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, Appl. Catal. A-Gen. 232 (2002) 107-120. [4] J. L. Li, T, Inui, “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures”, Appl. Catal. A-Gen. 137 (1996) 105-117. [5] L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, Chem. Commun. (2004) 1426-1427.
3-7 Reference: 1. Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., and Takehira, K., “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol,” 2004, Applied Catalysis A: General, 263, 249–253 2. Kung, H.H., Reitz, T.L., Ahmed, S., Krumpelt, M., and Kumar, R., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction,” 2000, Journal of Molecular Catalysis A: Chemical, 162, 275–285 3. Agrell, J., Hasselbo, K., Jansson, K., Järås, S. G., and Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique,” 2001, Applied Catalysis A: General, 211, 239–250 4. Venezia, A. M., Pantaleo, G., Longo, A., Carlo, G. D., Casaletto, M. P., F. Liotta, L., and Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts,” 2005, Journal of Physical Chemitry B, 109, 2821-2827 5. Mullins, C. B., Ojifinni, R. A., Kim, T. S., Stiehl, J. D., McClure, S. M., White, J. M., and Gong, J., “Low temperature CO oxidation on Au(111) and the role of adsorbed water,” 2007, Topics in Catalysis, 44, 57-63 6. Manzoli, M., Avgouropoulos, G., Tabakova, T., Papavasiliou, J., Ioannides, T., and Boccuzzi, F., “Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts,” 2008, Catalysis Today, 138, 239–243 7. Madeira, L. M., Mendes, D., Garcia, H., Silva, V. B., and Mendes, A., “Comparison of Nanosized Gold-Based and Copper-Based Catalysts for the Low-Temperature Water-Gas Shift Reaction,” 2009, Industrial & Engineering Chemistry Research, 48, 430-439 8. Appel, L. G., Souza K. R., Lima, A. F.F., Sousa, F. F., “Preparing Au/ZnO by precipitation-deposition technique,” 2008, Applied Catalysis A: General, 340, 133-139. 9. Haruta, M., “Size- and support-dependency in the catalysis of gold,” 1997, Catalysis Today, 36, 153-166. 10. Schüth, F., Wolf, A., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” 2002, Applied Catalysis A: General, 226, 1-13. 11. Bond, G., and Thompson, D., “Formulation of mechanism for gold-catalysed reaction,” 2009, Gold Bulletin, 42, 247-259. 12. Goodman, D. W., Chen, M. S., “Structure-activity relationship in supported Au catalysts,” 2006, Catalysis Today, 111, 22-23. 13. Yeh, C-T., and Chen, Y-J., “Deposition of Highly Dispersed Gold on Alumina Support,” 2001, Journal of Catalysis, 200, 59-68. 14. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications,” Gold Bulletin, 37, 27-36. 15. Muhler, M., Strunk, J., Kähler, K., Xia, X., Comotti, M., Schüth, F., and Reinecke, T., “Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies,” 2009, Applied Catalysis A: General, 359, 121–128 16. Fierro, G., Jacono, M. L., Inversi, M., Porta, P., Cioci, F., and Lavecchia, R., “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction,” 1996, Applied Catalysis A: General, 137, 327-348
4-13 References: 1. Fierro, J.L.G., Lago, R.M., Penã, M.A., and Espinosa, L.A., “Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts,” 2003, Topics in Catalysis, 22, 3-4, 245-251. 2. Kim, D. H., Lee, J. K., and Ko, J. B., “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor,” 2004, Applied Catalysis A: General, 278, 25–35. 3. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts,” 2004, Journal of Catalysis, 228, 56–65. 4. Chen, Y. W., Chang, L. H., Sasirekha, N., and Wang, W. J., “Preferential Oxidation of CO in H2 Stream over Au/MnO2-CeO2 Catalysts,” 2006, Industrial & engineering chemistry research, 45, 4927-4935. 5. Schüth, F., and Wolf, A., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” 2002, Applied Catalysis A: General, 226, 1-13. 6. Appel, L. G., Souza K. R., Lima, A. F.F., Sousa, F. F., “Preparing Au/ZnO by precipitation-deposition technique,” 2008, Applied Catalysis A: General, 340, 133-139. 7. Pettersson, L. J., Lindström, B., and Menon, P. G., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles,” 2002, Applied Catalysis A: General, 234, 111–125 8. Stephanopoulos, M. F., Fu, Q., Kudriavtseva, S., and Saltsburg, H., “Gold–ceria catalysts for low-temperature water-gas shift reaction,” 2003, Chemical Engineering Journal, 93, 41–53 9. Venezia, A. M., Pantaleo, G., Longo, A., Carlo, G. D., Casaletto, M. P., F. Liotta, L., and Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts,” 2005, Journal of Physical Chemitry B, 109, 2821-2827 10. C.-J. Zhang, A. Michaelides, D.A King and S.J. Jenkins, “Structure of gold atoms on stoichiometric and defective ceria surfaces,” 2008, Journal of Chemical Physics, 129, 194708 11. Flytzani-Stephanopoulos, M., Fu, Q., Kudriavtseva, S., and Saltsburg, H., “Gold–ceria catalysts for low-temperature water-gas shift reaction,” 2003, Chemical Engineering Journal, 93, 41–53. 12. Bond, G., and Thompson, D., “Formulation of mechanism for gold-catalysed reaction,” 2009, Gold Bulletin, 42, 247-259 13. Haruta, M., “Size- and support-dependency in the catalysis of gold,” 1997, Catalysis Today, 36, 153-166. 14. Mills, G., Gordon, M.S., and Metiu, H., “Oxygen adsorption on Au clusters and a rough Au.111. surface: The role of surface flatness, electron confinement, excess electrons, and band gap,” 2003, Journal of Chemical Physics, 118, 4198-4205. 15. Goodman, D.W., and Chen, M.S., “Structure-activity relationships in supported Au catalysts,” 2006, Catalysis Today, 111, 22-33. 16. Agrell, J., Boutonnet, M., Melián-Cabrera, I., and Fierro, J.L.G., “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterization,” 2003, Applied Catalysis A: General, 253, 201–211 17. Li, J-L., and Inui, T., “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures,” 1996, Applied Catalysis A: General, 137, 105-117 18. Pirone, R.,Caputo, T., Lisi, L., and Russo, G., “On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases,l 2008, Applied Catalysis A: General, 348, 42–53 19. Agrell, J., Boutonnet, M., and Fierro, J. L.G., “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways,” 2003, Applied Catalysis A: General , 253, 213–223 20. Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., and Kung, H.H., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction,”2000, Journal of Molecular Catalysis A: Chemical, 162, 275–285 21. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor,” 2004, Journal of Catalysis, 228, 43–55 22. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., and Busca, G., “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts,” 2004, Journal of Catalysis, 228, 56–65 23. Kawamura, Y., Ishida, T., Tezuka, W., and Igarashi, A., “Hydrogen production by oxidative methanol reforming with various oxidants over Cu-based catalysts,” 2008, Chemical Engineering Science, 63, 5042 – 5047 24. Boccuzzi, F., Manzoli, M., and Chiorino, A., “ Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysis supported on ZnO and TiO2,” 2004, Applied Catalysis B: Environmental, 57, 201-209 25. Deng, Q., Li, X., Peng Z., Long, Y., Xiang, L., and Cai, T., “Catalytic performance and kinetics of Au/γ-Al2O3 catalysts for low-temperature combustion of light alcohols,” 2010, Transactions Of Nonferrous Metals Society Of China, 20, 437-442 26. Caps, V., Quinet, E., Morfin, F., Diehl, F., Avenier, P., and Rousset, J-L., “Hydrogen effect on the preferential oxidation of carbon monoxide over alumina-supported gold nanoparticles,” 2008, Applied Catalysis B: Environmental, 80, 195–201 27. Bion, N., Epron, F., Moreno, M., Marinõ, F., and Duprez, D., “Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Noble Metals and Transition Metal Oxides: Advantages and Drawbacks,” 2008, Topics in Catalysis, 51, 76–88 28. Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,” 2003, Journal of Catalysis, 219, 389–403 29. Choi, Y., and Stenger, H. G., “Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst,” 2002, Applied Catalysis B: Environmental, 38, 259–269 30. Fierro, G., Jacono, M. L., Inversi, M., Porta, P., Cioci, F., and Lavecchia, R., “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction,” 1996, Applied Catalysis A: General, 137, 327-348 31. Kartusch, C., and Bokhoven, J. A., “Hydrogenation over gold catalysts: The interaction of gold with hydrogen,” 2009, Gold Bulletin, 42, 343-347
5-3 References: 1. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications,” 2004, Gold Bulletin, 37, 27-36 2. Iwasawa, Y., Liu, H., Kozlov, A. I., Kozlova, A. P., Shido, T., and Asakura, K., “Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide,” 1999, Journal of Catalysis, 185, 252-264 3. Caps, V., Quinet, E., Morfin, F., Diehl, F., Avenier, P., and Rousset, J-L., “Hydrogen effect on the preferential oxidation of carbon monoxide over alumina-supported gold nanoparticles,” 2008, Applied Catalysis B: Environmental, 80, 195–201 4. Metiu, H., Mills, G., and Gordon, M. S. “Oxygen adsorption on Au clusters and a rough Au.111. surface: The role of surface flatness, electron confinement, excess electrons, and band gap,” 2003, Journal Of Chemical Physics, 118, 4198-4205 5. Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J. and Delmon, B, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” 1993, Journal of Catalysis, 174, 1, 175-192 6. Behm, R. J., Schubert, M. M.,1 Hackenberg, S., Veen, A. C. V., Muhler, M., and Plzak, V., “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction,” 2001, Journal of Catalysis, 197, 113–122 7. Bond, G., and Thompson, D., “Formulation of mechanisms for gold-catalysed reactions,” 2009, Gold Bulletin, 42, 4,247-259 8. Nørskov, J.K., Lopez, N., Janssens, T.V.W., Clausen, B.S., Xu, Y., Mavrikakis, M., and Bligaard, T., “On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation,” 2004, Journal of Catalysis, 223, 232-235 9. Chen, Y-W., Sangeetha, P., and Yang, Y-F., “Au/FeOx-TiO2 Catalysts for the Preferential Oxidation of CO in a H2 Stream,” 2009, Industrial & Engineering Chemistry Research, 48, 10402–10407 10. Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., and Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3,” 2003, Journal of Catalysis, 219, 389–403 11. Nørskov, J.K., Mavrikakis, and M., Stoltze, P., “Making gold less noble,” 2000, Catalysis Letters, 64, 101–106 12. Bokhoven, J. A., Louis, C., Miller, J. T., Tromp, M., Safonova, O. V., and Glatzel, P., “Activation of Oxygen on Gold/Alumina Catalysts: In Situ High-Energy-Resolution Fluorescence and Time-Resolved X-ray Spectroscopy,” 2006, Angewandte Chemie International Edition, 45, 4651 –4654 13. Fierro, J.L.G., Alejo, L., Lago, R., Pefia, and M.A., “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts,” 1997, Applied Catalysis A: General, 162, 281-297. 14. Wolf, E.E., Schuyten, S., Guerrero, S., Miller, J.T., and Shibata, T., “Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation,” 2009, Applied Catalysis A: General, 352, 133-144. 15. Agrell, J., Boutonnet, M., and Fierro, J.L.G., “ Production of hydrogen from methanol over binary Cu/ZnO catalysts. Part II. Catalytic activity and reaction pathways,” 2003, Applied Catalysis A: General, 253, 213-223.
A-4 References: 1. Schüth, F., and Wolf, A., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” 2002, Applied Catalysis A: General, 226, 1–13 2. Fierro, J.L.G., Lago, R.M., Peña, M.A., and Espinosa, L.A., “Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts,” 2003, Topics in Catalysis, 22, 245-251 3. Fan, K-N., Cao, Y., Wu, G-S., Wang, L-C., Liu, Y-M., Dai, W-L., and He, H-Y., “Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts,” 2006, Applied Surface Science, 253, 974–982 4. Khassin, A. A., Pelipenko, V. V., Minyukova, T. P., Zaikovskii, V. I., Kochubey, D. I., and Yurieva, T. M., “Planar defect of the nano-structured zinc oxide as the site for stabilization of the copper active species in Cu/ZnO catalysts,” 2006, Catalysis Today, 112, 143–147 5. Boccuzzi, F., Manzoli, M., and Chiorino, A., “Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” 2004, Applied Catalysis B: Environmental, 57, 201-209 6. Gazsi, A., Bánsági, T. and Solymosi, F. “Hydrogen formation in the reactions of methanol on supported Au catalysts,” 2009, Catalysis Letter, 131, 33-41. 7. Shen, W., Shan, W., Feng, Z., Li, Z., Zhang, J., and Li, C., “Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods,” 2004, Journal of Catalysis, 228, 206–217
|