跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明治
研究生(外文):Ming-Zhi Lee
論文名稱:具多重量子能障之氮化銦鎵/氮化鎵多重量子井的發光二極體之效能研究
論文名稱(外文):Investigation on the performance of multi-quantum barriers in InGaN/GaN multi-quantum well light-emitting diodes
指導教授:李俊奇李俊奇引用關係
指導教授(外文):Jiunn-Chyi Lee
學位類別:碩士
校院名稱:北台灣科學技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:多重量子能障外部量子效率發光二極體
外文關鍵詞:Multi-Quantum BarriersExternal Quantum EfficiencyLight-Emitting Diodes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:522
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:1
本論文是研究將多重量子能障(Multi-Quantum Barriers,簡稱MQBs)結構加入多重量子井(Multi-Quantum Wells,簡稱MQWs)發光二極體(Light-Emitting Diodes,簡稱LED)後,其對發光二極體發光效率之改善情形。我們將具有與不具有多重量子能障結構的氮化銦鎵/氮化鎵(InGaN/GaN)多重量子井樣品做變溫及變電流電激發光(Electroluminescence,簡稱EL)量測,溫度範圍為20至300K,注入電流為10至100mA。分析氮化銦鎵/氮化鎵(InGaN/GaN)發光二極體樣品電激發光量測所得到的結果,我們觀察到多重量子能障的結構提高了載子侷限效率,減少了載子溢出現象。這是因為多重量子能障提高了有效的能障高度,使載子侷限在作用層(active layer)內的數量增加。在變溫與變電流情況下,我們也計算了發光二極體的外部量子效率。由發光效率的變化情形,可以發現具有多重量子能障結構之樣品有更好的發光效率,且對溫度變化的敏感性較低。因此,加入多重量子能障結構,確實能改善發光二極體之發光效率。
We introduce a structure of multi-quantum barriers (MQBs) into the multi-quantum well (MQW) heterostructures to improve the performance in light-emitting diodes.The InGaN/GaN MQW LEDs with and without MQBs were prepared by metal-organic vapor phase epitaxy system. The electroluminescence measurements were carried out over a temperature range from 20 to 300 K and an injection current level from 10 to 100 mA.According to the experimental results of the InGaN/GaN MQW LEDs, we observe the enhancement of carrier confinement in the active layer and the inhibited carrier leakage over the barrier to the p-GaN regions for the sample with MQBs, which we attribute to the increase of effective barrier heights due to the quantum interference of the electrons within MQBs.In addition, the variations of electroluminescence external quantum efficiency as a function of injection current at various temperatures are also obtained for the samples. It is observed that the sample possessing MQBs exhibit less sensitive temperature dependence and indeed improve the radiative efficiency.
目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 6
第二章 LED基本原理 8
2.1 發光二極體的發光原理 8
2.2 量子井與量子侷限效應 11
2.3 能帶尾理論 16
2.4 氮化物選用之生長基板 18
第三章 實驗方法 28
3.1樣品介紹 28
3.2電激發光光譜量測系統 34
第四章 實驗結果與討論 38
4.1 發光二極體樣品之基本EL光譜量測 38
4.2 不具有MQB結構樣品之變溫變電流EL光譜量測 39
4.3 具有MQB結構樣品之變溫變電流EL光譜量測結果 41
4.4 外部量子效率 45
第五章 結論 56
參考文獻 60

表目錄
表4.1 不具有與具有MQB結構的氮化銦鎵/氮化鎵(InGaN/GaN)樣品,在不同的輸入電流下所擬合的能帶尾理論參數 48

圖目錄
圖2.1 注入電流在順向偏壓導致自發輻射產生光子 22
圖2.2 量子井能階分佈 23
圖2.3 量子井、量子線及量子點與電子物質波波長比較關係示意圖 24
圖2.4 電子在(a)塊材(Bulk)、(b)量子井(quantum well)、(c)量子線(quantum wire)及(d)量子點(quantum dot)中能階密度隨能量變化之關係圖 25
圖2.5 量子井結構:(a)單一量子井 (b)多層量子井 26
圖2.6 半導體能隙與晶格常數關係圖 27
圖3.1 不具有MQB結構之氮化銦鎵/氮化鎵(InGaN/GaN)樣品磊晶結構示意圖 30
圖3.2 具有MQB結構之氮化銦鎵/氮化鎵(InGaN/GaN)樣品磊晶結構示意圖 31
圖3.3 氮化銦鎵/氮化鎵(InGaN/GaN)多重量子井不加入MQB結構之發光二極體能帶示意圖 32
圖3.4 氮化銦鎵/氮化鎵(InGaN/GaN)多重量子井加入MQB結構之發光二極體能帶示意圖 33
圖3.5 電激發光(電子、電洞產生耦合)過程示意圖 36
圖3.6 電激發光光譜量測系統架構圖 37
圖4.1 兩個氮化銦鎵/氮化鎵(InGaN/GaN)多重量子井發光二極體樣品,在溫度300 K時,輸入電流為20 mA時,藉由電激發光所量測到的結果 49
圖4.2 在變溫與變電流情況下,不具有MQB結構樣品其電激發光峰值的變化情形,圖中之實線是能帶尾理論所擬合之結果,相關參數列在表1中 50
圖4.3 在變溫與變電流情況下,不具有MQB結構樣品其電激發光半高寬的變化情形 51
圖4.4 載子從淺井至深井的躍遷行為示意圖 52
圖4.5 在變溫與變電流情況下,具有MQB結構樣品其電激發光峰值的變化情形,圖中之實線是能帶尾理論所擬合之結果,相關參數列在表1中 53
圖4.6 在變溫與變電流情況下,具有MQB結構樣品其電激發光半高寬的變化情形 54
圖4.7 不具有與具有MQB結構之氮化銦鎵/氮化鎵(InGaN/GaN)量子井樣品,在變溫與變電流情況下,經由計算所得的外部量子效率 55
[1]V. Yu. Davadov, A. A. Klochated and V. V. Emtsev phys. Stat. sol. (b) 230 NO. 2, R4-R6 (2002)
[2]V. Yu. Davadov, A. A. Klochated and V. V. Emtsev phys. Stat. sol. (b) 234 NO. 3, 787-795 (2002)
[3]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)
[4]Ryo Kajitani, Koji Kawasaki and Misaichi Takeuchi,Materials Science and Engineering: B, 139, 186-191(2007)
[5]O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff,M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F.Eastman, J. Phys.: Condens. Matter 14 , 3399(2002)
[6]Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S.Nakamura, Phys. Rev. B 55, R1938 (1997)
[7]Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997)
[8]P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71,569 (1997)
[9]P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata,T. Sugano,and Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999)
[10]Y.-H. Cho, G. H. Gainer, A.J. Fisher, J. J. Song, S. Keller, U. K.Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998)
[11]T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab,and S. Sakai,Appl, Phys. Lett. 76, 1737 (2000)
[12]Uchida,T. Tang, S.Goto, T. Mishima, A.Niwa, and J.Gotoh, Appl. Phys. Lett. 74, 1153 (1999)
[13]S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, "High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys. 34, L797-L799 (1995)
[14]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996)
[15]C. H. Chen, I. Jin, S. P. Pai, Z. W. Dong, C. J. Lobb, T. Venkatesan, K. Edinger, J. Orloff and J. Melngailis, "Fabrication of High-Temperature Superconducting Josephson Junctions on Substrates Patterned by Focused Ion Beam," Appl. Phys. Lett. 73, 1730-1732 (1998)
[16]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "Current readout of infrared detectors, "400 nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes," IEEE J. Select. Topics Quantum Electron. 8(4), 744-748 (2002)
[17]C. Huh and S. J. Park, "Effects of temperature on InGaN/GaN light-emitting diodes with different multiple-quantum well structures," Electrochem. and Solid-State Lett. 7(11), G266-G 268 (2004)
[18]K. Iga, H. Uenohara and F. Koyama, "Electron reflectance of multi-quantum barrier (MQB)," Electron. Lett. 22, 1008-1010 (1986)
[19]T. Loh, T. Miyamoto, F. Koyama and K. Iga, "Strain-Compensated Multi-Quantum Barriers for Reduction of Electron Leakages in Long-Wavelength Semiconductor Laser," Jpn. J. Appl. Phys. 34, 1504-1505 (1995)
[20]T. Takagi, F. Koyama and K. Iga, "Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode," Appl. Phys. Lett. 59(22), 2877-2879 (1991)
[21]紀國鍾,蘇炎坤,光電半導體技術手冊,台灣電子材料與元件協會
[22]S. J. Lee, N. H. Shin, J. J. Ko, M. J. Park and R. Kummel, Semicond. Sci.Technol. 7 ,1072-1079 (1992)
[23]T. Wang, P.J. Parbrook, M.A. Whitehead, W.H. Fan and A.M. Fox, J. CrystalGrowth, 273, 48 (2004)
[24]S. F. Chichibu, A. C. Abare, M. P. Mack, M. S. Minsky, T. Deguchi, D.Cohen, P. Kozodoy, S. B. Fleischer, S. Keller, J. S. Speck, et al. Mater. Sci.and Eng. B, 59, 298-3066, (1999)
[25]S. Chichibu, A. Abare, M. Minsky, S.Keller, S. Fleischer, J. Bowers, E.Hu,U. Mishra, L. Coldren, S. DenBaars, T. Sota, Appl. Phys. Lett. 73,2006(1998)
[26]S. C. Jain, M. Willander, J. Narayan and R. Van Overstraeten,“III–nitrides Growth, characterization, and properties,” Journal of Applied Physics, Vol. 87, pp. 965-1006, 2000
[27]Atsushi Nakadaira and Hidenao Tanaka, “Metalorganic vapor phase epitaxy of cubic Al x Ga1- x N alloy on a GaAs,” Applied Physics Letters, Vol. 70, pp. 2720-2722, 1997
[28]Tilman Beierlein, S. Strite, A. Dommann and D. J. Smith,“Properties of InGaN deposited on Glass at Low Temperature,”MRS Internet Journal Nitride Semiconductor Research, Vol. 2, Article 29, 1997
[29]史光國,現代半導體發光及雷射二極體材料技術
[30]郭文泉,氮化銦鎵氮化鎵多層量子井之光學特性研究(國立中央大學,物理研究所,碩士論文,中華民國八十九)
[31]N. Yoshimoto, T. Matsuoka, T. Sasaki, and A. Katsui, "Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 59(18), 2251-2253 (1991)
[32]R. Tsu and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett. 22(11), 562-564 (1973)
[33]S. Dhar, U. Jahn, O. Brandt, P. Waltereit, and K. H. Ploog, "Influence of exciton localization on the quantum efficiency of GaN/(In,Ga)N multiple quantum wells grown by molecular-beam epitaxy," Appl. Phys. Lett. 81(4), 673-675 (2002)
[34]A. Hori, D. Tasunaga, A. Satake, and K. Fujiwara, "Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes," J. Appl. Phys. 93(5), 3152 (2003)
[35]N. Otsuji, K. Fujiwara, and J. K. Sheu, "Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer ," J. Appl. Phys. 100(11), 113105 (2006)
[36]S. A. Hashemizadeh, J.-P. R. Wells, P. Murzyn, J. Brown, and B. D. Jones,T.Wang and P. J. Parbrook,A. M. Fox, D. J. Mowbray, and M. S. Skolnick,Appl. Phys. Lett. 87, 232106 (2005)
[37]J.P. Liu, G.D. Shen, J.J. Zhu, S.M. Zhang, D.S. Jiang and H. Yang, J. Crystal Growth. 295, 7 (2006) Ryo Kajitani, Koji Kawasaki and Misaichi Takeuchi,Materials Science and Engineering: B, 139, 186-191(2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊