跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔鈺茗
研究生(外文):Yu-ming Gong
論文名稱:表面處理對P型氮化鎵特性影響之研究暨非螢光粉式混色發光二極體元件之研製
論文名稱(外文):Effects of the Surface Treatment on P-type GaN and a Novel Fabrication of Phosphor-free Mix-color LEDs
指導教授:許世昌許世昌引用關係
指導教授(外文):Shih-chang Sheu
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:111
中文關鍵詞:混色發光二極體表面處理p型氮化鎵氮氣電漿非螢光粉式
外文關鍵詞:N2 plasmasurface treatmentp-GaNphosphor-freeMix-color LEDs
相關次數:
  • 被引用被引用:4
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用氮氣電漿p型氮化鎵作表面處理,以降低導電膜Ni/Au與p型氮化鎵之間的特徵接觸電阻值。實驗結果顯示,透過合適的表面預處理,我們可以有效地改善電性,並提高LED元件電流散佈的均勻性,減少漏電流值並提昇出光效率。另一方面,我們也透過氮氣電漿的引入來減少蝕刻製程中所誘發的電性損壞,我們發現添加氮氣的蝕刻環境,有助於在蝕刻過程中減少N2的散失,同時實驗發現在射頻功率500W、Cl2:10sccm/N2:20sccm的蝕刻環境下,蝕刻製程後仍能保有歐姆接觸特性,這項成果對未來p-GaN表面的結構化蝕刻有莫大的貢獻,將使我們在增加出光效率的同時,能夠降低蝕刻p-GaN所伴隨而來的電性損壞。最後我們也探討經過蝕刻製程後,使用氮氣電漿作表面再處理的修復效果,結果顯示在蝕刻過程中添加氮氣,比製程後再使用氮氣作修復來的有效許多。
另一方面,本論文透過磊晶成長與製程設計,於單一晶粒上製作出非螢光粉式新穎式結構之混色發光二極體。利用選擇性區域再成長的技術,分次磊晶成長藍光、黃綠光,兩種發光波段的雙色光LED於共同的n-type GaN基板上,透過金屬線的連接,不需要經由螢光粉來激發,便可以藉由電流源來調配使用者所需要的藍、綠光混光比例,同時我們由CIE色度座標圖上的色彩調變軌跡觀察到,製作出白光LED將會是可預期且可行的。
In this study, a reduction of Ni/Au ohmic contact resistivity on p-GaN was obtained by surface treatment using N2 plasma. It has been shown that an improvement of contact resistivity can be achieved through a proper using of N2 plasma pre-treatment. The current spreading becomes better and the leakage current was absolutely decreased therefore the light output power was significantly increased. On the other hand, we have investigated the recovery of induced-damage on p-GaN during ICP etching process. It was found that the addition of N2 to Cl2 plasma in the etching of p-GaN has more positive effects. This is attributed to the preferential loss of N2 was prevented which would otherwise compensate the surface region. Furthermore, it has been found that an ohmic contact to p-GaN could be formed in a 500W, Cl2:10sccm/N2:20sccm plasma. This is a significantly improvement for applications of surface texturing on p-GaN to enhance light extraction and reduce the induced-damage during ICP etching process at the mean time. Furthermore, we have investigated the effects of N2 plasma post-treatment after ICP etching process. It was found that, in contrast, the addition of N2 to Cl2 plasma in the etching of p-GaN is more effective than the use of N2 plasma as a post-treatment for damage recovery.
In this study, we also demonstrate a GaN-based phosphor-free mix-color light-emitting diode with wavelength tunable on single chip. The novel mix-color LED device was realized by the selective area growth method with blue and green MQWs grown on common n-GaN. Especially when such two LEDs were connected with metal wire in parallel electrically, the device could be operated by injection current without any phosphor-converted solution to obtain the proper ratio of blue to green EL spectrum. It has been shown that phosphor-free white light emitting diode should be predicable and realizable through the observation of trace variation of chromatic coordinates.
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 序論 1
1.1 研究背景與實驗動機-經表面處理氮化鎵之特性研究 1
1.2 研究背景與實驗動機-新穎化結構之混光發光二極體元件製作 4
參考文獻 9
第二章 理論基礎、製程設備及量測系統 14
2.1 理論基礎 14
2.1.1 發光二極體(Light Emitting Diodes,LEDs)原理 14
2.1.2 金屬-半導體歐姆接觸理論(Metal-Semiconductor Ohmic contact) 15
2.1.3 傳輸線模型理論(Transmission Line Model,TLM) 18
2.1.4 混光LED顏色混合理論 20
2.2 製程設備系統 21
2.2.1 反應式離子蝕刻機(Reactive Ion Etch ,RIE)原理 21
2.2.2 感應耦合電漿離子蝕刻(ICP)原理 22
2.2.3 電子束蒸鍍原理 23
2.2.4 電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)系統 24
2.2.5 有機金屬氣相磊晶(metalorganic chemical vapor deposition, MOCVD)系統 25
2.3 實驗量測系統 26
2.3.1 電流-電壓量測系統 26
2.3.2 發光二極體光輸出功率(Output Power)量測系統 26
2.3.3 X射線光電子能譜儀(X-ray Photoelectron Spectrometer, XPS)原理 27
參考文獻 34
第三章 經表面處理氮化鎵之特性研究 35
3.1 經氮氣電漿表面處理之氮化鎵特性研究 37
3.1.1 實驗步驟與方法 37
3.1.2 結果與討論 42
3.2 蝕刻製程中使用不同氣體組成之氮化鎵特性研究 59
3.2.1 實驗步驟與方法 59
3.2.2 結果與討論 60
3.3 蝕刻製程中使用不同氮氣比例與射頻功率之氮化鎵特性研究 64
3.3.1 實驗步驟與方法 64
3.3.2 結果與討論 66
3.4 蝕刻製程完成後經氮氣電漿表面再處理之氮化鎵特性研究 74
3.4.1 實驗步驟與方法 74
3.4.2 結果與討論 75
參考文獻 79
第四章 新穎化結構之混光發光二極體元件製作 81
4.1 實驗步驟與方法 81
4.2 結果與討論 89
參考文獻 105
第五章 結論與未來展望 107
5.1 結論 107
5.2 未來展望 109
[1] S.Nakamura, “InGaN-based vioet laser diodes,” Semicond. Sci. Technol., vol. 14, pp. R27-R40, 1999.
[2] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp.9383, 2003.
[3] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes, ” Appl. Phys. Lett., vol. 63, pp.2174, 1993.
[4] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes, ” Appl. Phys. Lett., vol. 74, pp. 2256, 1999.
[5] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol 84, pp. 855,2004.
[6] H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, C. C. Yu, “Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface, ” IEEE Photon. Technol. Lett., vol. 17, pp. 983-985, 2005.
[7] T. X. Lee, K. F. Gao, W. T. Chein, C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt Exp, vol.15, pp.6670-6676, 2007.
[8] K. J. Byeon, S. Y. Hwang, H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett., vol. 91, pp. 091106, 2007.
[9] T. N. Oder, K. H. Kim, J. Y. Lin, H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 466-8, 2004.
[10] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns, ” Appl. Phys. Lett., vol. 87, pp. 203508-3, 2005.
[11] C. Huh, K. S. Lee, E. J. Kang, S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383-9385, 2003.
[12] H. Ono, Y. Onoi, K. Kasahara, J. Mizuno, S. Shoji, “Fabrication of high-intensity light-emitting diodes using nanostructures by ultraviolet nanoimprint lithography and electrodeposition, ” J. J. Appl. Phys., vol. 47, pp. 933, 2008.
[13] J. O. Song, D. S. Leem, J. S. Kwak, Y. Park, S. W. Chae, T. Y. Seong, “Improvement of the luminous intensity of light-emitting diodes by using highly transparent Agindium tin oxide p-type ohmic contacts,” IEEE Photon Technol. Lett., vol.17, pp. 291-293, 2005.
[14] B. S. Cheng, C. H. Chiu, K. J. Huang, C. F. Lai, H. C. Kuo, C. H. Lin, T. C. Lu, S. C. Wang and C. C. Yu, “Enhanced light extraction of InGaN-based green LEDs by nano-imprinted 2D photonic crystal pattern Semicond,” Sci. Technol., vol. 23, pp. 055002, 2008.
[15] L. F. Lester, J. M. Brown, J. C. Ramer, L. Zang, S. D. Hersee, and J. C. Zolper, “Nanalloyed Ti/Al ohmic contacts to n-typeGaN using high-temperature premetallization anneal,” Appl. Phys. Lett., vol. 69, pp. 2737-2739, 1996.
[16] H. W. Jang and J. L. Leez, “Effect of Cl2 Plasma Treatment on Metal Contacts to n-Type and p-Type GaN,” Journal of The Electrochemical Society, vol.150, pp. G513-G519, 2003.
[17] Q. Fan, S. Chevtchenko, X. Ni, S. J. Cho, F. Yun, and H. Morkoç, “Reactive ion etch damage on GaN and its recovery,” J. Vac. Sci. Technol., vol. 24, pp. 1197-1201, 2006.
[18] H. W. Choi, S. J. Chua, and X. J. Kang, “Surface Modification and Ohmic Contact Formation to n and p-Type GaN,” phys. stat. sol., vol.188, pp.399-402, 2001.
[19] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon and Y. S. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508, 2005.
[20] T. S. Kim, S. M. Kim, Y. H. Jang and G. Y. Junga, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett., vol. 91, pp. 171114, 2007.
[21] D. G. Kent, K. P. Lee, A. P. Zhang, B. Luo, M. E. Overberg, C. R.Abernathy, F. Ren, K. D. Mackenzie, S. J. Pearton and Y. Nakagawa,“Effect of N2 plasma treatments on dry etch damage in n- and p-type GaN,” Solid-State Electronics, vol. 45, pp. 467-470, 2001.
[22] D. G. Kent, K. P. Lee, A. P. Zhang, B. Luo, M. E. Overberg, C. R. Abernathy, F. Ren, K. D. Mackenzie, S. J. Pearton and Y. Nakagawa, “Electrical effects of N2 plasma exposure on dry etch damae in p and n-GaN Schottky diodes.” Solid-State Electronics, vol.45, pp.1837-1842, 2001.
[23] S. W. Kim, J. Lee, C. Huh, N. M. Park, H. S. Kim, I. H. Lee and S. J. Park, “Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment.” Appl. Phys. Lett., vol. 76, pp. 3079-3082, 2000.
[24] Y. Tang, D. You, Jintong Xu, X. Li , X. Li and H. Gong “Reduction of ohmic contact resistivity on p-GaN using N2 plasma surface treatment at room temperature,” Semicond. Sci. Technol., vol.21, pp. 1597-1599, 2006.
[25] H. W. Choi, C. W. Jeon, and M. D. Dawson “Low resistivity contacts to p-type GaN by plasma treatment,” phys. stat. sol., vol. 0, pp. 2210-2213, 2003.
[26] 史光國, “半導體發光及雷射二極體材料技術,” 全華科技圖書股份有限公司, 2004.
[27] 蘇炎坤, “非螢光粉方式氮化鎵白光發光二極體之研製,” 行政院國科會專題研究計畫NSC 94-2215-E-006-003, 2006.
[28] X. Guo, J. W. Graff, and E. F. Schubert, “Photon Recycling Semiconductor Light Emitting Diode,” Proc. SPIE, Vol. 3938, pp. 60-67, 2000.
[29] X. Guo, G. D. Shen, B. L. Guan, X. L. Gu, D. Wu, and Y. B. Li, “Cascade single-chip phosphor-free white light-emitting diodes,” Appl. Phys. Lett., vol. 92, pp. 013507, 2008.
[30] I. K. Park, J. Y. Kim, M. K. Kwon, C. Y. Cho, J. H. Lim, and S. J. Park, “Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells,” Appl. Phys. Lett., vol. 92, pp. 091110, 2008.
[31] C. F. Huang, D. M. Yeh, C. F. Lu, H. S. Chen, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free All-semiconductor White-light Light-emitting Devices,” Optical Society, 2006.
[32] J. W. Shi, H. Y. Huang, C. K. Wang, J. K. Sheu, W. C. Lai, Y. S. Wu, C. H. Chen, J. T. Chu, H. C. Kuo, W. P. Lin, T. H. Yang and J. I. Chyi, “Phosphor-Free GaN-Based Transverse Junction Light Emitting Diodes for the Generation of White Light,” IEEE Photon Technol Lett., vol. 18, pp. 2593-2595, 2006.
[33] J. W. Shi, S. H. Guol, J. K. Sheu, W. C. Lai, C. K. Wang, C. H. Chen, C. H. Kuo and J. I. Chyi,“Phosphor-Free GaN-Based Cascade Transverse Junction Light Emitting Diode Arrays for the High-Power Generation of White-Light,” IEEE, pp.584-585, 2007.
[34] J. W. Shi, C. C. Chen, C. K. Wang, C. S. Lin, J. K. Sheu, W. C. Lai, C. H. Kuo, C. J. Tun, T. H. Yang, F. C. Tsao, and J. I. Chyi, “Phosphor-Free GaN-Based Transverse Junction White-Light Light-Emitting Diodes With Regrown n-Type Regions,” IEEE Photon Technol. Lett., vol. 20, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top