跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李玄景
研究生(外文):Syuan-jing Li
論文名稱:中文語音認知處理之事件相關電位研究
論文名稱(外文):Chinese Spoken Language Cognitive Processing of The Brain Event-Related Potential Study
指導教授:孫光天孫光天引用關係
指導教授(外文):Koun-tem Sun
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:數位學習科技學系碩士班
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:52
中文關鍵詞:N2-P3複合波中文口語事件相關電位CART
外文關鍵詞:N2-P3 complexChinese Spoken LanguageEvent-related PotentialsCART
相關次數:
  • 被引用被引用:1
  • 點閱點閱:985
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:2
本研究以事件相關電位 (Event-Related Potentials, ERPs) 探討大腦對於中文口語詞彙的記憶處理機制。大腦的記憶歷程以及其提取作用,是人們處理日常生活事情時一再重複經歷的過程,當人們問起你做過的事情、看過的東西,大腦會進行提取的動作,而如何提取記憶即為本研究的主題。本研究的實驗程序分為兩步驟,第一步驟為聽覺Oddball的檢驗,主要目的為測試受測者大腦的狀態是否正常反應,若測試結果無誤即可進入下一步驟;第二步驟為中文口語的認知實驗,實驗先以隨機選取的球類影片,讓受測者觀賞,作為實驗要提取的記憶內容,實驗以三個不同的刺激物誘發腦波,其中只有一個與影片內容有關。由ERPs的實驗結果顯示,大腦對於詞彙的刺激產生N200及P300的腦波成份,在此稱為N2-P3複合波,此腦波成分為受測者對於口語詞彙的主動辨識所造成。
本研究並以CART決策樹進行分類規則的建立,結果顯示於14位受測者中,能建立一個通用的規則,即以Cz電極點位置的N2-P3複合波為判斷依據,當次實驗擁有最大振幅者就判斷為所提取的目標物,成功判斷率可達81%。
In this study, the research theme is event-related potentials (Event-Related Potentials, ERPs) for the spoken Chinese word. When people experience the events of daily life, the memory store in the brain.The brain''s memory process and extraction is the subject of this study. The experimental procedure is divided into two steps, the first step is oddball test. The main purpose of oddball test is to check the state of the brain’s reaction, if the test results correctly then enter the next step. The second step is spoken Chinese cognitive experiments, the user watches a randomly selected film, and the content fo the film is the target. There are three different stimuli, of which only one related to the selected film content. The ERPs results show that, Chinese spoken language evoke N200 and P300 components, known as the N2-P3 complex.
The classification rules are established by The algorithm of CART. When the N2-P3 complex amplitude at Cz electrode is maximum, the event will be determined the target, and the success rate is 81%.
摘要............................................................................................................................... v
Abstract ......................................................................................................................... vi
誌謝.............................................................................................................................. vii
目次............................................................................................................................ viii
表次............................................................................................................................... x
圖次............................................................................................................................... xi
一、緒論........................................................................................................................ 1
1.1研究背景與動機.............................................................................................. 1
1.2研究目的.......................................................................................................... 2
二、文獻探討................................................................................................................ 3
2.1大腦各部位簡介.............................................................................................. 3
2.2腦電波概述...................................................................................................... 4
2.2.1 腦波的發現.......................................................................................... 4
2.2.2 國際 10-20 制電極位置標定法 ........................................................ 5
2.2.3 電極連接與組合.................................................................................. 7
2.3事件相關電位.................................................................................................. 7
2.4相關腦波成分.................................................................................................. 8
2.4.1 N200 ...................................................................................................... 8
2.4.2 P300 .................................................................................................... 10
2.5語音與腦波之相關研究................................................................................ 11
2.6記憶理論........................................................................................................ 13
三、實驗與方法.......................................................................................................... 15
3.1實驗設備........................................................................................................ 15
3.2實驗程序........................................................................................................ 15
3.3實驗設計........................................................................................................ 16
3.3.1研究對象............................................................................................. 16
3.3.2實驗環境............................................................................................. 16
3.3.3實驗刺激物......................................................................................... 17
3.3.4實驗流程............................................................................................. 18
3.4腦波資料記錄與分析.................................................................................... 19
3.4.1資料記錄............................................................................................. 19
3.4.2資料分析............................................................................................. 20
3.4.3統計分析方法..................................................................................... 21
3.4.4資料探勘技術..................................................................................... 22
四、結果與討論.......................................................................................................... 25
4.1 統計分析結果............................................................................................... 25
4.1.1 Oddball實驗 ....................................................................................... 25
4.1.2語音辨識實驗..................................................................................... 26
4.1.3討論..................................................................................................... 40
4.2 分類結果....................................................................................................... 41
4.2.1排序法結果......................................................................................... 41
4.2.2討論..................................................................................................... 44
五、結論與建議.......................................................................................................... 45
5.1結論................................................................................................................ 45
5.1.1 Oddball實驗 ....................................................................................... 45
5.1.2語音辨識實驗..................................................................................... 46
5.2未來研究建議................................................................................................ 47
5.2.1中文口語研究建議............................................................................. 47
5.2.2記憶相關研究建議............................................................................. 47
參考文獻...................................................................................................................... 48
中文部分.............................................................................................................. 48
英文部分.............................................................................................................. 48
中文部分
王建雅、陳學志 (2009)。腦科學為基礎的課程與教學。Journal of Educational Practice and Research,22(1),139-168。
魏景漢、羅躍嘉 (2002)。認知事件相關電位教程。北京:經濟日報。
英文部分
Bai, C., Bornkessel-Schlesewsky, I., Wang, L., Hung, Y., Schlesewsky, M., & Burkhardt, P. (2008). Semantic composition engenders an N400: evidence from Chinese compounds. Neuroreport, 19(6), 695.
Bennington, J., & Polich, J. (1999). Comparison of P300 from passive and active tasks for auditory and visual stimuli. International Journal of Psychophysiology, 34(2), 171-177.
Berger, H. (1929). Uber das elektrenkephalogramm des menschen. Arch Psychiatr Nervenkr, 87, 527-570.
Boll, S., & Berti, S. (2009). Distraction of task-relevant information processing by irrelevant changes in auditory, visual, and bimodal stimulus features: A behavioral and event-related potential study. Psychophysiology, 46(3), 645-654.
Breiman, L., Friedman, J., Olshen, R., Stone, C., Steinberg, D., & Colla, P. (1983). CART: Classification and Regression Trees. Wadsworth: Belmont, CA.
Comerchero, M., & Polich, J. (1999). P3a and P3b from typical auditory and visual stimuli. Clinical Neurophysiology, 110(1), 24-30.
Cummings, A., eponien , R., Koyama, A., Saygin, A., Townsend, J., & Dick, F. (2006). Auditory semantic networks for words and natural sounds. Brain research, 1115(1), 92-107.
Czigler, I., Cox, T., Gyimesi, K., & Horvath, J. (2007). Event-related potential study to aversive auditory stimuli. Neuroscience Letters, 420(3), 251-256.
Dimoska, A., Johnstone, S., & Barry, R. (2006). The auditory-evoked N2 and P3 components in the stop-signal task: Indices of inhibition, response-conflict or error-detection? Brain and Cognition, 62(2), 98-112.
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Näätänen, R., et al. (2009). Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. [doi: DOI: 10.1016/j.clinph.2009.07.045]. Clinical Neurophysiology, 120(11), 1883-1908.
Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433.
Enge, S., Fleischhauer, M., Brocke, B., & Strobel, A. (2008). Neurophysiological measures of involuntary and voluntary attention allocation and dispositional differences in need for cognition. Personality and Social Psychology Bulletin, 34(6), 862.
Gunji, A., Hoshiyama, M., & Kakigi, R. (2000). Identification of auditory evoked potentials of one¡¦s own voice. Clinical Neurophysiology, 111(2), 214-219.
Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106(2), 156-164.
Hoffman, J. (1990). Event-related potentials and automatic and controlled processes. Event-related brain potentials: Basic issues and applications, 145-157.
Holeckova, I., Fischer, C., Giard, M., Delpuech, C., & Morlet, D. (2006). Brain responses to a subject''s own name uttered by a familiar voice. Brain research, 1082(1), 142-152.
Katayama, J., & Polich, J. (2001). Stimulus context determines P3a and P3b. Psychophysiology, 35(01), 23-33.
Kayser, J., Fong, R., Tenke, C., & Bruder, G. (2003). Event-related brain potentials during auditory and visual word recognition memory tasks. Cognitive Brain Research, 16(1), 11-25.
Kiehl, K., Laurens, K., Duty, T., Forster, B., & Liddle, P. (2001). Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology, 38(01), 133-142.
Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240-249.
Lenz, D., Schadow, J., Thaerig, S., Busch, N., & Herrmann, C. (2007). What''s that sound? Matches with auditory long-term memory induce gamma activity in human EEG. International Journal of Psychophysiology, 64(1), 31-38.
Lindín, M., Zurrón, M., & Díaz, F. (2004). Changes in P300 amplitude during an active standard auditory oddball task. Biological Psychology, 66(2), 153-167.
Linden, D., Prvulovic, D., Formisano, E., Vollinger, M., Zanella, F., Goebel, R., et al. (1999). The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cerebral Cortex, 9(8), 815.
Liu, B., Wang, Z., & Jin, Z. (2009). The integration processing of the visual and auditory information in videos of real-world events: An ERP study. Neuroscience Letters, 461(1), 7-11.
Liu, Y., Shu, H., & Wei, J. (2006). Spoken word recognition in context: Evidence from Chinese ERP analyses. Brain and Language, 96(1), 37-48.
Mulert, C., Jager, L., Propp, S., Karch, S., Stormann, S., Pogarell, O., et al. (2005). Sound level dependence of the primary auditory cortex: Simultaneous measurement with 61-channel EEG and fMRI. Neuroimage, 28(1), 49-58.
Muller-Gass, A., & Schroger, E. (2007). Perceptual and cognitive task difficulty has differential effects on auditory distraction. Brain research, 1136(1), 169-177.
Näätänen, R., Gaillard, A., & Mantysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted* 1. Acta psychologica, 42(4), 313-329.
Naatanen, R., & Picton, T. (1986). N2 and automatic versus controlled processes. Electroencephalography and clinical neurophysiology. Supplement, 38, 169.
Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147.
Perre, L., Midgley, K., & Ziegler, J. C. (2009). When beef primes reef more than leaf: Orthographic information affects phonological priming in spoken word recognition. Psychophysiology, 46(4), 739-746.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Polich, J. (2008). Neuropsychology of P300. Handbook of event-related potential components. Oxford University Press; New York.
Pontifex, M., Hillman, C., & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46(2), 379-387.
Ren, G. Q., Liu, Y., & Han, Y. C. (2009). Phonological activation in chinese reading: an event-related potential study using low-resolution electromagnetic tomography. Neuroscience, 164(4), 1623-1631.
Schirmer, A., Simpson, E., & Escoffier, N. (2007). Listen up! Processing of intensity change differs for vocal and nonvocal sounds. Brain research, 1176, 103-112.
Shinba, T. (1997). Event-related potentials of the rat during active and passive auditory oddball paradigms. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(5), 447-452.
Simon-Dack, S. L., & Teder-Sälejärvi, W. A. (2008). Proprioceptive cues modulate further processing of spatially congruent auditory information. A high-density EEG study. Brain research, 1220, 171-178.
52
Sussman, E., & Steinschneider, M. (2009). Attention effects on auditory scene analysis in children. [doi: DOI: 10.1016/j.neuropsychologia.2008.12.007]. Neuropsychologia, 47(3), 771-785.
Tulving, E. (2002). E PISODIC M EMORY: From Mind to Brain. Annual review of psychology, 53(1), 1-25.
Van Den Brink, D., Brown, C., & Hagoort, P. (2001). Electrophysiological evidence for early contextual influences during spoken-word recognition: N200 versus N400 effects. Journal of Cognitive Neuroscience, 13(7), 967-985.
Van Petten, C., & Rheinfelder, H. (1995). Conceptual relationships between spoken words and environmental sounds: Event-related brain potential measures. Neuropsychologia, 33(4), 485-508.
Zhang, Q., & Damian, M. (2009). The time course of segment and tone encoding in Chinese spoken production: an event-related potential study. Neuroscience, 163(1), 252-265.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top