參考文獻
[1] Guest Editors, “Guest editorial the third international meeting on brain-computer interface technology: making a difference,” IEEE Trans. Rehabil. Eng., vol. 14, no. 2, pp. 126-127, 2006.
[2] F. Cincotti, L. Bianchi, G. Birch, C. Guger, J. Mellinger, R. Scherer, R. N. Schmidt, O. Y. Suárez, and G. Schalk, “BCI meeting 2005—workshop on technology: hardware and software,” IEEE Trans. Rehabil. Eng., vol. 14, no. 2, pp. 128-131, 2006.
[3] A. Kübler, V. K. Mushahwar, L. R. Hochberg, and J. P. Donoghue, “BCI meeting 2005—workshop on clinical issues and applications,” IEEE Trans. Rehabil. Eng., vol. 14, no. 2, pp. 131-134, 2006.
[4] A. Nijholt, B. Reuderink, and D. Plass-Oude Bos, “Turning shortcomings into challenges: Brain–computer interfaces for games,” Elsevier Entertainment Computing., vol. 1 pp. 85-94, 2009.
[5] A. Finke, A. Lenhardt, and H. Ritter, “The MindGame: A P300-based brain_computer interface game,” Elsevier Neural Networks., vol. 22, pp. 1329-1333, 2009.
[6] 廖宇璁,「想像幾何旋轉動作與數學心算之腦電波分析」,國立台灣師範大學機電科技學系碩士論文,2009。[7] G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J. McFarland, and K. R. Müller, “Toward brain-computer interfacing,” Cambridge, Mass.: MIT Press., 2007.
[8] S. G. Mason and G. E. Birch, “A brain-controlled switch for asynchronous control applications,” IEEE Trans. Biomed. Eng., vol. 47, no. 10, pp. 1297-1307, 2000.
[9] J. d. R. Millán and J. Mouriño, “Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project,” IEEE Trans. Rehabil. Eng., vol. 11, no. 2, pp. 159-161, 2003.
[10] R. Caton, “The electric currents of the brain,” British Medical Journal., Vol. 2, pp. 278, 1875.
[11] H. Berger, “Über das Elektrenkephalogramm des Menschen,” European Archives of Psychiatry and Clinical Neuroscience., vol. 87, pp. 527-570, 1929.
[12] http://www.dls.ym.edu.tw/neuroscience/functional_c.htm
[13] H. Jasper, “Report of committee on methods of clinical exam in EEG,” Electroencephalogr. Clin. Neurophysiol., vol. 10, pp. 370-375, 1958.
[14] E. H. Chudler, “Neuroscience for kids,” available at the links for on-line courses at the author’s homepage at
http://faculty.washington.edu/chudler/1020.html, 1996-2008.
[15] L. Hu, B. H. Jansen, and N. N. Boutros, “Is P50 an epiphenomenon?” Proc. of 27st Annual International Conference of the IEEE EMBS., pp. 1166-1169, 2005.
[16] 李郁德,「圖象色彩組合對主觀偏好與辨識率之影響及腦波(EEG)評估」,國立台灣科技大學工業管理系碩士論文,2003。[17] S. Sanei and J. A. Chambers, “EEG signal processing,” John Wiley & Sons, Ltd., 2007.
[18] J. Bhattacharya and H. Petsche, “Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise,” Signal Processing., Vol. 85, pp. 2161-2177, 2005.
[19] A. Nigam, J. E. Hoffman, and R. F. Simons, “N400 to semantically anomalous pictures and words,” Journal of Cognitive Neuroscience Massachusetts Institute of Technology., vol. 4, no. 1, pp. 15-22, 1992.
[20] J. G. Snodgrass, and M. Vanderwart, “A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual Complexity,” Journal of Experimental Psychology. Human Learning and Memory., vol. 6, no. 2, pp. 174-215, 1980.
[21] M. Kiefer, “Perceptual and semantic sources of category-specific effects: Event-related potentials during picture and word categorization,” Memory & Cognition., vol. 29, no. 1, pp. 100-116, 2001.
[22] T. Harmony, T. Fernández, A. Fernández-Bouzas, J. Silva-Pereyra, J. Bosch, L. DõÂaz-Comas, and L. GalaÂn, “EEG changes during word and figure categorization,” Elsevier. Clinical Neurophysiology., vol. 112, pp. 1486-1498, 2001.
[23] Y. H. Zhang, and C. Y. Guo, “Relationship between perceptual and semantic levels of representation: An event-related potential study,” Chinese Science Bulletin., vol. 53, no. 24, pp. 3847-3859, 2008.
[24] M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, D. Hazry, and I. Zunaidi, “Time-frequency analysis of EEG signals for human emotion detection,” Springer-Verlag Berlin Heidelberg., pp. 262-265, 2008.
[25] O. AlZoubi, I. Koprinska, and R. A. Calvo, “Classification of brain-computer interface Data,” the Seventh Australasian Data Mining
Conference., pp. 9,2008.
[26] http://www.bbci.de/competition/iii/desc_IIIa.pdf.
[27] R. C. Holte, “Very simple classification rules perform well on most commonly used datasets,” Machine Learning., vol. 11, no. 1, pp. 63-91, 1993.
[28] J. R. Quinlan, “Induction of decision trees,” Machine Learning., vol. 1, no. 1, pp. 81-106, 1986.
[29] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Machine Learning., vol. 6, no. 1, pp. 37-66, 1991.
[30] J. Moody, and C. J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural computation., vol. 1, no. 2, pp. 281-294, 1989.
[31] J. C. Platt, “Fast training of support vector machines using sequential minimal optimization,” Advances in kernel methods: support vector learning., pp. 185-208, 1999.
[32] S. Le Cessie, and J. C. Van Houwelingen, “Ridge estimators in logistic regression,” Applied Statistics., vol. 41, no. 1, pp. 191-201, 1992.
[33] Y. Freund, and R. E. Schapire, “Experiments with a new boosting algorithm,” Machine Learning: Proceedings of the Thirteenth International Conference., pp. 1-9, 1996.
[34] L. Breiman, “Bagging Predictors,” Machine Learning., vol. 24, no. 2, pp. 123-140, 1996.
[35] D. H. Wolpert, “Stacked generalization,” Elsevier. Neural networks., vol. 5, no. 2, pp. 231-259, 1992.
[36] L. Breiman, “Random Forests,” Machine Learning., vol. 45, no. 1, pp. 5-32, 2001.
[37] D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlögl, G. Pfurtscheller,
J. d. R. Millán, M. Schröder, and N. Birbaumer, “The BCI competition III: validating alternative approaches to actual BCI problems,” IEEE Transactions on Neural Systems and Rehabilitation Engineering., vol. 14, no. 2, pp. 153-159, 2006.
[38] J. Jin, X. Wang, and B. Wang, “Classification of direction perception EEG Based on PCA-SVM,” Third International Conference on Natural Computation., pp. 5, 2007.
[39] W. Yan, Q. Liu, H. Lu, and S. Ma, “Multiple similarities based kernel subspace learning for image classification,” Computer Vision–ACCV 2006 Springer-Verlag Berlin Heidelberg., pp. 244-253, 2006.
[40] 陳志瑋,「研究以小波神經網路作μ波即時鑑別」,國立成功大學機械工程學系碩士論文,2002。[41] 林志穎,「數位音訊廣播系統中轉換器之電路設計」,國立成功大學電機工程學系碩士論文,2001。[42] K. M. Sanjit, “Digital Signal Processing,” 3rd Ed., McGRAW.Hill International Edition., 2006.
[43] http://www.mathworks.com/access/helpdesk/help/pdf_doc/wavelet/wavelet_ug.pdf.
[44] D. E. Newland, “An introduction to random vibrations, spectral and wavelet analysis longman scientific & technical,” England., 1993.
[45] S. Mallat, “A theory for multiresolution signal decomposition: The Wavelet Representation,” IEEE Trans. on Pattern Analysis and
Machine Intelligence., vol. 11, no. 7, pp. 674-693, 1989.
[46] A. Grossman and J. Morlet, “Decompositions of hardy functions into square integrable wavelets of constant shape,” SIAM Journal
of Mathematical Analysis., vol. 15, no. 4, pp. 723-736, 1984.
[47] I. Daubechies, “Orthonormal based of compactly supported wavelet,” Communications in Pure Applied Math., vol. 41, no. 7, pp. 909-996, 1988.
[48] H. B. Aradhye, B. R. Bakshi, R. A. Strauss, and J. F. Davis, “Multiscale SPC using wavelets - theoretical analysis and properties,” AIChE Journal., pp. 1-41, 2003.
[49] B. R. Bakshi, “Multiscale PCA with application to multivariate statistical process monitoring,” AIChE Journal., pp. 1-18, 1998.
[50] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions on information theory., vol. 41, no. 3, pp. 613-621, 1995.
[51] S. Yoon, and J. F. MacGregor, “Principal-component analysis of multiscale data for process monitoring and fault diagnosis,” AIChE Journal., vol. 50, no. 11, pp. 2891-2903, 2004.
[52] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain computer interface,” Journal of Neural Engineering., vol. 4, pp. R1-R13, 2007.
[53] J. A. K. Suykens, and J. Vandewalle, “Least squares support vector machine classifiers,” Neural processing letters., vol. 9, pp. 293-300, 1999.
[54] http://www.neuroscan.com/landing.cfm
[55] 張菀珍、葉榮木、蔡俊明、劉昀松「想像幾何左右旋轉與左右手動之辨識率比較」,國立屏東教育大學資訊科學期刊,2010。
[56] P. Jahankhani, V. Kodogiannis, and K. Revett, “EEG signal classification using wavelet feature extraction and neural networks,” IEEE International Symposium on Modern Computing., pp. 1-5, 2006.
[57] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm , 2001.
[58] M. H. JOHNSON著 洪蘭譯 「發展的認知神經科學」,信誼基金出版社,2001。
[59] 吳冠徵,「大腦在察覺中、英文句法和數學邏輯錯誤的EEG頻譜振盪反應」,私立佛光大學心理學系碩士論文,2010。[60] R. Carter著 洪蘭譯 「大腦的秘密檔案」,遠流出版社,2008。
[61] 林昆達「小波理論與類神經網路在橋樑非破壞檢測之應用」,中原大學土木工程學系碩士論文,2002。[62] 陳柏元「應用小波轉換及人工智慧進行配電系統電容切換暫態位置之判斷」,中原大學電機工程學系碩士論文,2005。[63] http://www.google.com.tw/imghp?hl=zh-TW&tab=wi.
[64] G. Pfurtscheller, C. Neuper, A. Schl¨ogl, and K. Lugger, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,” IEEE Transactions On Neural Systems And Rehabilitation Engineering., vol. 6, no. 3, pp. 316-325, 1998.
[65] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, “How many people are able to operate an EEG-based brain-computer interface (BCI)?,” IEEE Transactions On Neural Systems And Rehabilitation Engineering., vol. 11, no. 2, pp. 145-147, 2003.
[66] B. Kamousi, Z. Liu, and B. He, “Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis,” IEEE Transactions On Neural Systems And Rehabilitation Engineering., vol. 13, no. 2, pp. 166-171, 2005.
[67] M. Phothisonothai, and M. Nakagawa, “EEG-based classification of new imagery tasks using three-layer feedforward neural network classifier for Brain–Computer Interface,” Journal of Physical Socirty of Japan., vol. 75, no. 10, 2006.
[68] 方偉力,「以主成分分析法和線性鑑別分析法辨識想像左右手動」,國立台灣師範大學機電科技學系碩士論文,2007。