(18.232.50.137) 您好!臺灣時間:2021/05/07 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張軒銘
研究生(外文):Hsuan-Ming Chang
論文名稱:台灣產九孔(Haliotis diversicolor)之遺傳結構初步研究
論文名稱(外文):The Preliminary Study of Genetic Structure of Small Abalone (Haliotis diversicolor) in Taiwan
指導教授:郭金泉郭金泉引用關係
指導教授(外文):Jin-Chywan Gwo
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:111
中文關鍵詞:九孔遺傳結構族群遺傳粒線體DNA微衛星DNA水產養殖貝類
外文關鍵詞:Haliotis diversicolorgenetic structurepopultation geneticsmitochondrial DNAmicrosatellite DNAaquacultureshellfish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:2
九孔(Haliotis diversicolor)為台灣水產養殖最高價貝類物種。近年來台灣養殖九孔爆發大規模死亡,產量銳減至過去盛期的1%。過去試圖從病毒、細菌和食物相等方面找出的原因,可惜至今仍未有定論;但對於遺傳方面的研究則鮮有論述。是否與養殖九孔大量死亡有關,實在需要迫切了解和釐清。
本研究利用粒線體DNA COI部分序列與微衛星DNA,以兩種(粒線體與核DNA)不同層面之DNA分子標記,探討2個台灣野生(花蓮石梯─TH、野柳龜吼─TY,共68個體)、5個台灣養殖(澎湖─CP、苗栗通霄─CM、東北角─CE、高雄林園─CK,共107個體、台日雜交─TJ共25個體)和3個日本野生(和歌山─JW、福岡─JF、下關─JS,共63個體),共10個九孔族群(263個體)之遺傳結構差異。
以粒線體DNA COI區域序列(序列總長808 bp)分析上述10個族群共263個樣本,結果發現有88個變異位點(Variable site)位點,分屬81種單倍型(Haplotype)。日本野生類群保有最高之單倍型與核苷酸多樣性最高(JPW, h=0.970, θπ=0.459);台灣養殖類群最低(TWC, h=0.871, θπ=0.316)。
使用6組微衛星DNA引子對分析上述9個族群(未分析台日雜交族群)96個樣本,9個族群中僅東北角族群(CE)未偏離哈溫平衡,其餘皆顯著偏離,各族群之觀測雜合度皆低於期望雜合度(Ho<He)。對偶基因豐度(Ar)以日本福岡族群最高(JF, Ar=33.33),台灣澎湖族群最低(CP, Ar=23.77)。以NJ建構親源關係樹、PCA分析、貝氏統計遺傳組成推估結果顯示,日本野生與台灣野生、台灣養殖3類群遺傳結構迥異,其中尤以高雄養殖族群(CK)最為不同。
綜合粒線體DNA及微衛星DNA之遺傳分化指數FST值分析顯示,日本野生族群間無遺傳分化(FST<0.05);日本野生族群與台灣養殖族群存在中度遺傳分化至高度遺傳分化(0.05<FST<0.25 , P<0.05);比較台灣野生與台灣養殖族群,屬於無遺傳分化到中度遺傳分化情形(0<FST<0.15 , P<0.05)。比較台灣養殖族群間,高雄養殖(CK)族群與其他3個台灣養殖族群皆有中度遺傳分化(0.05<FST<0.15, P<0.05)。
兩種不同層次之DNA分子標記分析結果皆顯示,日本野生九孔族群確實與台灣(野生和養殖)族群有遺傳結構上的差異,可作為未來引種的考量。台灣養殖族群間雖多樣性與雜合度無顯著萎縮,但遺傳結構已產生偏離情形,長年來的人工繁殖確實已對台灣養殖九孔遺傳組成、種質造成影響。本研究初步建立部分台灣產九孔之遺傳資源資訊,同時建立台灣野生族群之種質資訊,以期為將來台灣九孔遺傳育種(例如選育抗病品系)和種質資源保護與利用,提供基礎數據與理論依據。近交是否是造成近來台灣養殖九孔大量死亡的原因,值得進一步研究釐清。

Small abalone (Haliotis diversicolor) is the highest commercial valued aquaculture shellfish species in Taiwan. Recently, the cultivated small abalone production has reduced dramatically to 1% of former peak production. Many researchers have tried to clarify the cause of diseases by investigating pathogens and environmental parameters and have speculated that viruses are to blame for allegedly causing the mass mortality rate. However, there is no consensus yet. Further studies in genetics could be the key in identifying the root cause of the high mortality rate for small abalone production.
In this study, we studied the genetic structure of 5 wild and 5 cultured abalone populations collected from Taiwan and Japan. We used 6 microsatellite DNA loci and partial of mitochondrial DNA COI sequences to examine the genetic diversity as well as degree of inbreeding.
Among 263 individuals, whose data were obtained from 10 populations and 88 variable sites, partial of mtDNA(mitochondrial)COI sequences(808bp)were categorized into 81 haplotypes. The wild population was the highest in Japan, both in haplotype and nucleotide diversity(JPW, h=0.970; θπ=0.459). In contrast, the cultured population in Taiwan was the lowest in those two parameters(TWC, h=0.871; θπ=0.316).
A total of 56 individuals from 5 wild populations and 40 individuals from 4 hatcheries(Japan × Taiwan population excluded)were analyzed for six microsatellite loci. Tests for all loci revealed that H-W equilibrium only existed in Taiwan’s Northeast(CE)population, while the results from other populations all deviated significantly from H-W equilibrium. Overall, the observed heterozygosity(Ho)was less than expected heterozygosity(He)of the 9 populations. Allele richness ranged from 33.33 to 23.77(JF, Ar=33.33 ; CP, Ar=23.77). Results from reconstructed NJ phylogenetic tree, principle component analysis(PCA)and Bayesian method to estimate the genetic components, revealed that Japan wild population, Taiwan wild population and Taiwan cultured population differed in genetic structure, especially the Kaohsiung population(CK)deviated significantly from others.
Genetic differentiation index(FST)analysis by mtDNA COI sequence and microsatellite DNA among 10 populations indicated that:among Japan wild populations, there were no differentiation(FST<0.05), and Japan wild populations were moderate to high differentiation(0.05<FST<0.25 , P<0.05) from Taiwan cultured populations. Taiwan wild populations were moderate to no differentiation(0<FST<0.25, P<0.05)from Taiwan cultured populations. Among 4 Taiwan cultured populations, Kaohsiung population was moderate differentiation(0.05<FST<0.15, P<0.05)from other Taiwan cultured populations.
In summary, results from using two kinds of molecular marker revealed that Japan wild population was different from Taiwan population(including wild and cultured)in genetic structure. Hence, Japan wild populations could be considered as an introduction into Taiwan’s abalone cultivation. Even though there were no significant decrease in genetic diversity and heterozygosity, the genetic structure deviated from wild populations under long period of artificial breeding. This study not only provides fundamental information for future fisheries management but also selective breeding(such as disease resistance stock) of Taiwan’s small abalone. We still need to perform further studies on whether or not the cultured small abalones in Taiwan suffer from inbreeding depression.

第一章 前言 1
第一節 九孔簡介 1
第二節 台灣九孔養殖概況 3
第三節 生物多樣性與遺傳結構 6
第四節 遺傳標記簡介 8
第五節 鮑屬遺傳標記研究進展 10
第六節 九孔鮑的種質資源研究概述 17
第七節 研究目的 20
第二章 材料方法 21
第一節 樣本來源及採集地點 21
第二節 萃取樣本DNA 22
第三節 粒線體DNA COI序列分析 25
第四節 微衛星DNA圖譜建構 27
第五節 數據分析 29
第三章 結果 35
第一節 粒線體DNA COI區域序列分析 35
第二節 微衛星DNA遺傳數值分析 39
第四章 討論 43
第一節 遺傳多樣性 43
第二節 遺傳結構 45
第三節 遺傳標記輔助育種 49
第四節 台灣九孔養殖產業的未來展望 50
第五章 結論 51
參考文獻 52
圖 67
表 81
附錄一 實驗用BUFFER配方 95
附錄二 變性聚丙烯醯胺凝膠電泳與銀染 96
作者簡歷 97



圖目錄

圖一、1993~2008年九孔成貝和種苗產量變化 67
圖二、1993~2008九孔成貝和種苗產值變化 68
圖三、本研究所使用樣本採集地圖 69
圖四、粒線體DNA COI片段以類聚分析法(NJ)建構九孔之親緣關係樹 70
圖五、粒線體DNA COI部分序列建構10個九孔族群之網狀親源關係樹 75
圖六、粒線體DNA COI部分序列建構九孔4大類群之網狀親源關係樹 76
圖七、微衛星DNA以NEI氏遺傳距離建構之NJ親緣關係樹 77
圖八、微衛星DNA以PCA建構9個九孔族群遺傳結構類聚圖 78
圖九、微衛星DNA以STRUCTURE軟體推估9個九孔族群遺傳組成(K=2~6) 79
圖十、微衛星DNA以STRUCTURE軟體推估9個九孔族群遺傳組成(K=3) 80



表目錄

表一、樣本資訊 81
表二、本試驗4大類群定義 82
表三、本試驗所使用6組微衛星DNA引子對資訊 83
表四、九孔單倍型在10個群體間的分佈 84
表五、以DNASP分析MTDNA COI序列單倍型多樣性及核苷酸多樣性 87
表六、MTDNA COI利用ARLENQUIN軟體以AMOVA分析10個族群與4大類群間遺傳變異分佈模式 88
表七、MTDNA COI以ARLEQUIN軟體計算族群間遺傳分化指數 89
表八、6個微衛星位點的對偶基因數、對偶基因豐度、觀測雜合度、期望雜合度、哈溫平衡參數 90
表九、微衛星DNA利用ARLENQUIN軟體以AMOVA分析10個族群與3大類群間遺傳變異分佈模式 92
表十、微衛星DNA以ARLEQUIN軟體計算族群間遺傳分化指數 93
表十一、微衛星DNA以GENECLASS軟體計算族群間NEI氏遺傳距離 94


丁雲源、楊鴻禧(2003)。九孔種苗生產及病害防治(1冊)。基隆市:行政院農業委員會水產試驗所。
王獻溥(1994)。生物多樣性保護與利用的主要研究方向。資源科學(4),1-6。
王鷺驍、王志勇、柯才煥、周時強(2005)。不同地理種群雜色鮑的同功酶分析。廈門大學學報(自然科學版),44(1),98-101。
呂端華(1978)。中國近海鮑科的研究。海洋科學集刊,14,89-100。
巫文隆(2003)。台灣貝類目錄 i,腹足綱-原始腹足目:行政院農業委員會。
李莉、孫振興、楊樹德、常林瑞、楊立紅(2006)。用微衛星標記分析皺紋盤報群體的遺傳變異。遺傳,28(12),1549-1554。
柯才煥、陳曉佳、周時強、王志勇、王藝磊(2003)。幾種養殖鮑同工酶生化遺傳的比較研究。台灣海峽,22(2),45-51+152。
胡忠恆、陶錫珍(1995)。台灣現生貝類彩色圖鑑:國立自然科學博物館。
孫博、劉曉、張國范、趙洪恩、郭希明(2003)。一個皺紋盤鮑人工群體內個體大小遺傳變異的RAPD分析。海洋科學,27(5),27-30。
張亞平、施立明(1992)。動物粒線體DNA多態性的研究概況。動物學研究,13(3),289-298。
張國范、王繼紅、趙洪恩、闕華勇、劉曉(2002)。皺紋盤鮑中國群體和日本群體的自交與雜交F_1的RAPD標記。海洋與湖沼,33(5),484-491。
陳弘成、楊鴻禧(1979)。九孔之人工繁殖。中國水產,314,3-9。
陳昌生、嚴正凜、劉國柱、劉輝、紀德華(2003)。九孔鮑二倍體與三倍體核型的研究。集美大學學報(自然科學版),8(4),291-294。
曾文陽(1985)。鮑魚養殖學:養魚世界雜誌社。
曾福生、周賢鏘、朱惠真、余俊欣、盧民益、林金榮(2008)。利用RAPD分析臺灣東部養殖及野生九孔的遺傳變異。水產研究,16(2),49-58。
奧谷喬司(2001)。日本近海產貝類圖鑑:東海大學出版社。
楊鴻禧、丁雲源(1989)。九孔陸上養殖池生產力之研究。台灣省水產試驗所試驗報告,46,215-223。
楊鴻禧、丁雲源(1990)。九孔陸上多層式養殖方法之研究。台灣水產試驗所試驗報告,48,209-215。
萬俊芬、汪小龍、潘潔、李冰、李禎、包振民、燕敬平、方建光(2001)。日本盤鮑×皺紋盤鮑子代雜種優勢的RAPD分析。青島海洋大學學報(自然科學版),31(4),506-512。
劉雲國(2009)。水產生物DNA分子標記技術:科學出版社。
蔡明夷(2005)。雜色鮑人工雌核發育研究,博士論文,90-91,廈門大學,廈門,中國。
蔡英亞(1996)。世界大型的鮑。養魚世界,(10),46-50。
黎中寶(2004)。應用RAPD技術研究4種鮑的親緣關系。中國生態農業學報,12(4),60-63。
黎中寶、Appleyard, S. A.、Elliott, N. G.(2005a)。多元PCR在黑鮑(Haliotis rubra)微衛星遺傳研究中的應用。海洋與湖沼,36(4),319-325。
黎中寶、Appleyard, S. A.、Elliott, N. G.(2008)。羊鮑(Haliotis ovina)和耳鮑(H. asinina)MtDNA CO I 和CO II基因片段序列的比較研究。海洋與湖沼,39(2),168-173。
黎中寶、田柱、朱冬蕊、葉承義(2004a)。九孔鮑和雜色鮑等位酶的生化遺傳分析。海洋科學,28(2),27-31。
黎中寶、劉文彪、韓芳、李華、陳孝德(2005b)。4種經濟鮑遺傳多樣性與分化的研究。中國生態農業學報,13(4),15-19。
黎中寶、鄧書林、許秀芹、丁洋(2004b)。盤鮑和皺紋盤鮑等位酶的生化遺傳分析。海洋科學,28(4)。
Arai, K., & Wilkins, N. P. (1986). Chromosomes of Haliotis tuberculata L. Aquaculture, 58(3-4), 305-308.
Arai, K., Fujino, K., & Kudo, M. (1988). Genetic studies on the Pacific abalone .17. Karyotype and zymogram differences among 3 species of the abalones Haliotis planata, H. varia, and H. diversicolor diversicolor. Nippon Suisan Gakkaishi, 54(12), 2055-2064.
Arai, K., Tsubaki, H., Ishitani, Y., & Fujino, K. (1982). Genetic-Studies of the Pacific Abalone .7. Chromosomes of Haliotis discus hannai Ino and Haliotis discus Reeve. Bulletin of the Japanese Society of Scientific Fisheries, 48(12), 1689-1691.
Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37-48.
Brown L. D., & Murray, N. D. (1992). Population genetics, gene flow, and stock structure in Haliotis rubra and Haliotis laevigata. Abalone of the world: Biology, Fisheries and Culture. Blackwell Scienctific, 24-33.
Brown, L. D. (1991). Genetic variation and population structure in the blacklip abalone, Haliotis rubra. Australian Journal of Marine and Freshwater Research, 42(1), 77-90.
Brown, L. D. (1995). Genetic evidence for hybridization between Haliotis rubra and H. laevigata. Marine Biology, 123(1), 89-93.
Brown, W. M., George, M., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76(4), 1967-1971.
Buhay, J. E., & Crandall, K. A. (2005). Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Molecular Ecology, 14(14), 4259-4273.
Burton, R. S., & Tegner, M. J. (2000). Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story. Marine Ecology Progress Series, 202, 303-308.
Caro, T. M., & Laurenson, M. K. (1994). Ecological and Genetic factors in conservation a Cautionary Tale. Science, 263(5146), 485-486.
Colombera, D., & Tagliaferri, F. (1983). Chromosomes from Male Gonads of Haliotis tubercolata and Haliotis lamellosa (Haliotidae, Archeogasteropoda, Mollusca). Caryologia, 36(3), 231-234.
Conod, N., Bartlett, J. P., Evans, B. S., & Elliott, N. G. (2002). Comparison of mitochondrial and nuclear DNA analyses of population structure in the blacklip abalone Haliotis rubra Leach. Marine and Freshwater Research, 53(3), 711-718.
Cox, K. W. (1962). California abalones, family Haliotidae. California Fish and Game, 118, 1-133.
Del Rio-Portilla, M. A., & Gonzalez-Aviles, J. G. (2001). Population genetics of the yellow abalone, Haliotis corrugata, in Cedros and San Benito Islands: A preliminary survey. Journal of Shellfish Research, 20(2), 765-770.
Deng, Y. W., Liu, X., Zhang, G. F., & Zhao, H. G. (2007). Genetic parameter estimates for growth traits at early stage of Pacific abalone, Haliotis discus hannai Ino. Acta Oceanologica Sinica, 26(5), 90-95.
El Mousadik, A., & Petit, R. J. (1996). High level of genetic differentiation for allelic richness among populations of the argan tree Argania spinosa (L) Skeels endemic to Morocco. Theoretical and Applied Genetics, 92(7), 832-839.
Elliott, N. G. (2000). Genetic improvement programmes in abalone: what is the future? Aquaculture Research, 31(1), 51-59.
Elliott, N. G., Bartlett, J., Evans, B., & Sweijd, N. A. (2002). Identification of southern hemisphere abalone (Haliotis) species by PCR-RFLP analysis of mitochondrial DNA. Journal of Shellfish Research, 21(1), 219-226.
Evans, B., Bartlett, J., Sweijd, N., Cook, P., & Elliott, N. G. (2004). Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture, 233, 109-127.
Evans, B., Conod, N., & Elliott, N. G. (2001). Evaluation of microsatellite primer conservation in abalone. Journal of Shellfish Research, 20(3), 1065-1070.
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567.
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes - application to human mitochondrial DNA restriction data. Genetics, 131(2), 479-491.
Felsenstein, J. (1985). Confidence limits on phylogenies - an approach using the Bootstrap. Evolution, 39(4), 783-791.
Felsenstein, J. (1989). PHYLIP - Phylogeny inference package (Version 3.2). Cladistics, 5, 164-166.
Fujino, K. (1978a). Genetic Studies on Pacific Abalone .1. Inbreeding and overdominance as evidenced by biochemical polymorphism in a wild population. Bulletin of the Japanese Society of Scientific Fisheries, 44(4), 357-361.
Fujino, K. (1978b). Genetic Studies on Pacific Abalone .2. Excessive homozygosity in deficient animals. Bulletin of the Japanese Society of Scientific Fisheries, 44(7), 767-770.
Fujino, K., & Sasaki, K. (1984). Genetic studies on the Pacific abalone .8. Age association of genotypic proportions of Isozymes in the Pacific abalone. Bulletin of the Japanese Society of Scientific Fisheries, 50(1), 11-15.
Fujino, K., Arai, K., Iwadare, K., Yoshida, T., & Nakajima, S. (1990). Induction of gynogenetic diploid by inhibiting 2nd meiosis in the Pacific abalone. Nippon Suisan Gakkaishi, 56(11), 1755-1763.
Fujino, K., Nakajima, S., & Takahashi, T. (1988). Genetic studies on the Pacific abalone .16. Differential contribution of oocytes to triploid offsprings due to maternal genotypes at multiple loci in the Pacific abalone. Nippon Suisan Gakkaishi, 54(12), 2049-2054.
Fujino, K., Sasaki, K., & Okumura, S. (1984). Genetic studies on the Pacific abalone .9. Probable Involvement of thermostability variations of enzymes in the mechanisms of occurrence of deficient abalone. Bulletin of the Japanese Society of Scientific Fisheries, 50(4), 597-601.
Gaffney, P. M., Orbac, E. A., & Z., Y. (1998). Using the D code system to identify DNA sequence variation for studies of population structure in marine organisms. Mutation Analysis, 23~29.
Gallardo-Escarate, C., Alvarez-Borrego, J., Portilla, M. A. D., & Kober, V. (2004). Karyotype of pacific red abalone Haliotis rufescens (Archaeogastropoda : Haliotidae) using image analysis. Journal of Shellfish Research, 23(1), 205-209.
Geiger, D. L. (2000). Distribution and biogeography of the Haliotidae (Gastropoda: Vetigastropoda) world wide. Bollettino Malacologico, 35, 57-120.
Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity, 86(6), 485-486.
Gruenthal, K. M., & Burton, R. S. (2008). Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach, 1814), a candidate for endangered species status. Journal of Experimental Marine Biology and Ecology, 355(1), 47-58.
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41 95-98.
Hamm, D. E., & Burton, R. S. (2000). Population genetics of black abalone, Haliotis cracherodii, along the central California coast. Journal of Experimental Marine Biology and Ecology, 254(2), 235-247.
Hancock, B. (2000). Genetic subdivision of Roe's abalone, Haliotis roei Grey (Mollusca : Gastropoda), in south-western Australia. Marine and Freshwater Research, 51(7), 679-687.
Hara, M., & Kikuchi, S. (1992). Increasing the growth rate of abalone Haliotis discus hannai, using selective techniques. NOAA Technical Report, NMFS, 106, 21-26.
Hara, M., & Sekino, M. (2005). Genetic difference between Ezo-awabi Haliotis discus hannai and Kuro-awabi H. discus discus populations: Microsatellite-based population analysis in Japanese abalone. Fisheries Science, 71(4), 754-766.
Hara, M., & Sekino, M. (2007a). Parentage testing for hatchery produced abalone Haliotis discus hannai based on microsatellite markers: preliminary evaluation of early growth of selected strains in mixed family farming. Fisheries Science, 73(4), 831-836.
Hara, M., & Sekino, M. (2007b). Genetic differences between hatchery stocks and natural populations in pacific abalone (Haliotis discus) estimated using microsatellite DNA markers. Marine Biotechnology, 9(1), 74-81.
Hoshikawa, H., Sakai, Y., & Kijima, A. (1998). Growth characteristics of the hybrid between pinto abalone, Haliotis kamtschatkana Jonas, and ezo abalone, H. discus hannai Ino, under high and low temperature. Journal of Shellfish Research, 17(3), 673-677.
Huang, B. X., Chai, Z. L., Hanna, P. J., & Gough, K. H. (1997). Molecular sequences of two minisatellites in blacklip abalone, Haliotis rubra. Electrophoresis, 18(9), 1653-1659.
Huang, B. X., Peakall, R., & Hanna, P. J. (2000). Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers. Marine Biology, 136(2), 207-216.
Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA Sequence data. Genetics, 132(2), 583-589.
Jarayabhand, P., Yom-La, R., & Popongviwat, A. (1998). Karyotypes of marine molluscs in the family Haliotidae found in Thailand. Journal of Shellfish Research, 17(3), 761-764.
Jiang, L., Wu, W. L., & Huang, P. C. (1995). The mitochondrial DNA of Taiwan abalone Haliotis diversicolor Reeve, 1846 (Gastropoda: Archaeogastropoda: Haliotidae). Molecular Marine Biology and Biotechnology, 4(4), 353-364.
Jonasson, J., Stefansson, S. E., Gudnason, A., & Steinarsson, A. (1999). Genetic variation for survival and shell length of cultured red abalone (Haliotis rufescens) in Iceland. Journal of Shellfish Research, 18(2), 621-625.
Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munroled (Ed.), Mammalian Protein Metabolism (pp. 31-132). New York: Academic Press.
Klinbunga, S., Pripue, P., Khamnamtong, N., Puanglarp, N., Tassanakajon, A., Jarayabhand, P., Hirono, I., Aoki, T., & Menasveta, P. (2003). Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Marine Biotechnology, 5(5), 505-517.
Li, Q., Park, C., Endo, T., & Kijima, A. (2004a). Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture, 235(1-4), 207-222.
Li, Q., Park, C., Kobayashi, T., & Kijima, A. (2003). Inheritance of microsatellite DNA markers in the Pacific abalone Haliotis discus hannai. Marine Biotechnology, 5(4), 331-338.
Li, T. W., Yang, W. X., Su, X. R., Yang, Z. B., & Guo, H. (2004b). RAPD analysis of genetic diversities of three species of abalone. Journal of Shellfish Research, 23(4), 1139-1142.
Li, Z. B., & Chen, C. S. (2004). Genetic structure of cultured Haliotis diversicolor supertexta (Reeve) populations. Journal of Shellfish Research, 23(4), 1135-1137.
Li, Z. B., Appleyard, S. A., & Elliott, N. G. (2006). Population structure of Haliods rubra from South Australia inferred from nuclear and mtDNA analyses. Acta Oceanologica Sinica, 25(4), 99-112.
Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452.
Lucas, T., Macbeth, M., Degnan, S. M., Knibb, W., & Degnan, B. M. (2006). Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 259(1-4), 146-152.
Mgaya, Y. D., Gosling, E. M., Mercer, J. P., & Donlon, J. (1995). Genetic variation at three polymorphic loci in wild and hatchery stocks of the abalone, Haliotis tuberculata linnaeus. Aquaculture, 136(1-2), 71-80.
Minkler, J. (1977). Chromosomes of black abalone (Haliotis cracherodii). Experientia, 33(9), 1143-1143.
Nakamura, H. K. (1985). Chromosomes of Archaeogastropoda(Mollusca), with some remarks on cytotaxonomy of phylogeny. Publication of the Seto Marine Biological Laboratory. 31(3), 191-267.
Nei, M. (1972). Genetic distance between populations. American Naturalist, 106(949), 283-291.
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.
Nei, M., & Tajima, F. (1983). Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics, 105(1), 207-217.
Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295.
Pearse, D. E., & Crandall, K. A. (2004). Beyond FST: Analysis of population genetic data for conservation. Conservation Genetics, 5(5), 585-602.
Petit, R. J., El Mousadik, A., & Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12(4), 844-855.
Piry, S., Alapetite, A., Cornuet, J. M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GENECLASS2: A software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95(6), 536-539.
Power, A. G. (1988). Leafhopper response to genetically diverse maize stands. Entomologia Experimentalis Et Applicata, 49(3), 213-219.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
Ren, P., Wang, Z. Y., Yao, C. L., Liu, Y., & Ke, C. H. (2008). Development of 11 polymorphic microsatellite loci in the small abalone (Haliotis diversicolor Reeve). Molecular Ecology Resources, 8(6), 1390-1392.
Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463-5467.
Sasaki, K., Kanazawa, K., & Fujino, K. (1980). Genetic studies on the Pacific abalone .5. Zymogram differences among 5 species of the abalones from the coasts of Japan. Bulletin of the Japanese Society of Scientific Fisheries, 46(9), 1169-1175.
Sato, M., Takeuchi, M., Kanno, N., Nagahisa, E., & Sato, Y. (1991). Characterization and physiological role of tauropine dehydrogenase and Lactate dehydrogenase from muscle of abalone, Haliotis discus hannai. Tohoku Journal of Agricultural Research, 41(3-4), 83-95.
Selvamani, M. J. P., Degnan, S. M., & Degnan, B. N. (2001). Microsatellite genotyping of individual abalone larvae: Parentage assignment in aquaculture. Marine Biotechnology, 3(5), 478-485.
Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics, 16, 393-430.
Smith, P. J., & Conroy, A. M. (1992). Loss of genetic variation in hatchery produced abalone, Haliotis iris. New Zealand Journal of Marine and Freshwater Research, 26(1), 81-85.
Suarez, A. V., & Tsutsui, N. D. (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17(1), 351-360.
Suneson, C. A. (1960). Genetic Diversity - A protection against plant diseases and Insects. Agronomy Journal, 52(6), 319-321.
Sweijd, N. A., Bowie, R. C. K., Lopata, A. L., Marinaki, A. M., Harley, E. H., & Cook, P. A. (1998). A PCR technique for forensic, species level identification of abalone tissue. Journal of Shellfish Research, 17(3), 889-895.
Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599.
Tatarenkov, A., & Avise, J. C. (2007). Rapid concerted evolution in animal mitochondrial DNA. Proceedings of the Royal Society B-Biological Sciences, 274(1619), 1795-1798.
Teutsch, M. R., Stewart-Haynes, J. A., Beever, J. E., Xu, A., Schook, L. B., & Lewin, H. A. (1990). Haplotypes of the BoLA-A, Bf, CYP21 and DQB loci in Angus cattle. Animal biotechnology, 1(2), 185-199.
Wang, Z. Y., Ho, K. C., Yu, K. C., Yu, D. H., Ke, C. H., Mak, W. Y., & Chu, K. H.,. (2004a). Lack of genetic divergence in nuclear and mitochondrial DNA between subspecies of two Haliotis species. Journal of Shellfish Research, 23(4), 1143-1146.
Wang, Z. Y., Ke, C. H., Wang, Y. L., Xiao, Z. Q., Ho, K. C., & Chu, K. H. (2004b). Genetic variations and divergence of two Haliotis species as revealed by AFLP analysis. Journal of Shellfish Research, 23(4), 1147-1151.
Withler, R. E., Campbell, A., Li, S. R., Brouwer, D., Supernault, K. J., & Miller, K. M. (2003). Implications of high levels of genetic diversity and weak population structure for the rebuilding of northern abalone in British Columbia, Canada. Journal of Shellfish Research, 22(3), 839-847.
Wright, S. (1951). The genetical structure of population structure. Annals of Eugenics, 15, 323-354.
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19(3), 395-420.
Zhan, X., Hu, H. Y., Ke, C. H., Hu, S. N., Wang, D. X., & Chen, F. (2009). Isolation and characterization of eleven microsatellite loci in small abalone, Haliotis diversicolor Reeve. Conservation Genetics, 10(4), 1185-1187.
Zuniga, G., Del Proo, S. A. G., Cisneros, R., & Rodriguez, G. (2000). Population genetic analysis of the abalone Haliotis fulgens (Mollusca : Gastropoda) in Baja California, Mexico. Journal of Shellfish Research, 19(2), 853-859.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔