(3.235.245.219) 您好!臺灣時間:2021/05/07 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊兆喆
研究生(外文):Chao-Tse Yanz
論文名稱:氣舉式汙物收集器及投餵策略對半循環水箱網石斑魚育苗系統水質之影響
論文名稱(外文):The effect of air-lift particle collector and feeding strategy on the water quality of a semi-circulation system for rearing grouper fingerlings in cage
指導教授:劉擎華劉擎華引用關係朱元南朱元南引用關係
指導教授(外文):Chyng-Hwa LiouYuan-Nan Chu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:121
中文關鍵詞:石斑集污器氣舉式幫浦投餵策略
外文關鍵詞:grouperparticle collectorair-lift pumpfeeding strategy
相關次數:
  • 被引用被引用:3
  • 點閱點閱:514
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:179
  • 收藏至我的研究室書目清單書目收藏:0
摘要
石斑室內育苗為了加強攝食以避免殘食,於室內池中放置箱網進行育苗,以致阻斷水流,養殖池底無法排污,須耗用大量人力及時間換水及抽底,為提升養殖技術及節省人力,本試驗以氣舉式集汙設備收集汙物,藉此節省消耗人力及時間。本實驗室以往設計之之育苗流程及歷年來育苗經驗,均採用頻繁且大量換水的手法以維持水質,此違背循環系統設計理論盡量不換水以穩定生物濾床內硝化細菌的原則,故試驗期間測定水中氨氮、亞硝酸-氮、硝酸氮-氮之濃度變化以了解生物濾床所受之影響。
第一階段設計裝置及測試,經過三次改良,成功的利用氣流牽引的力量,將糞便殘餌從收集器底部帶出,留在收集盒中,並進行72汙物收集試驗,以比較此設備收集汙物的能力,結果發現在前24小時每2小時頻繁移去收取的汙物時,收集器的收集能力較使用掛網法的控制組好。
第二階段為比較系統裝設汙物收集器組,與原系統組的水質參數差異。首先測試兩套未裝設組72hr定量投餵的試驗,於第一天投餵總生物量3%的飼料共420g,之後停止投餵,72小時後才換水,結果未裝設集汙器之A、B兩系統其氨氮、亞硝-氮酸、硝酸-氮濃度表現相近,且氨氮濃度在第一天投餵停止後,明顯下降。
隨後測試裝設集汙器後對水質影響的試驗,分為24hr飽食投餵 (150g/5次/day)、48hr定量投餵(70g/2次/day)以及72hr定量投餵(140g/2次/day)三試驗,生物量分別為7kg(24、48hr試驗)及14kg(72hr試驗)。在24hr部分,氨氮濃度B組(無裝集汙器)高於A組(有裝設)兩倍以上。在48hr試驗的懸浮固物、氨氮,B組的濃度高於A組, 亞硝酸-氮、硝酸-氮的濃度並無顯著差異,而總生菌數A組低於B組。72hr試驗,氨氮濃度B組高於A組,其在高峰期的16小時、40小時、56小時特別明顯,亞硝酸-氮濃度在試驗前期0-32小時之前,B組高於A組,硝酸-氮濃度在16-48小時之間,B組高於A組,總生菌數B組在16-48小時之間高於A組,懸浮固物在48小時之前B組高於A組,而後趨於相近。
試驗期間A、B兩系統中的魚隻皆無疾病發生,而裝設集汙設備的A組水質明顯優於B組。各項水質結果顯示,此收集裝置能有效移除糞便及殘餌,達到幫助系統淨化水質的作用,但操作上必須頻繁移除收集到的汙物,避免收集裝置之汙物被水流沖失,使除污效果不彰。
歸納兩系統內氨氮、亞硝酸-氮、硝酸-氮濃度變化,可發現頻繁大量換水會造成菌相的不穩定,且亞硝酸濃度短期內易累積。大量投餵及頻繁換水使得生物濾床中菌相不穩定,造成亞硝酸-氮累積,但適量投餵(總生物量2%),此生物濾床在4-5天之後才能穩定移除亞硝酸-氮。

Abstract

In order to increase feed intake and avoid cannibalism in the indoor Grouper nursery cultures, cage were placed in the indoor nursery pools. This act caused cut-off of water flow that feces could not be gotten of from bottoms, and more manpower and time was required to change the water and clean the bottoms. Aiming to improve culture techniques, save manpower and time, this experiment attempted to use air lift style feces collectors to solve the problems. On the other hand, according to the nursery procedures we designed and years of experiences in rearing the larvae, this method of frequent and large scale water change contradicted with the principle of the recirculation system theory, in which minimal water change was necessary to stabilize the nitrifying bacteria in the biological filter beds. Therefore, the concentration changes of the water ammonia nitrogen (N), nitrite-N, and nitrate–N were monitored during experiments to know the effects of the biological filter bed on water quality.
The first experiment was designed to and test the apparatus. After 3 improvements, the traction of air flow succeeded in bringing out the feces and residue feed from the bottoms of the feces collectors. As the feces were collected in the boxes, 72 hours experiments were proceeded to compare the feces collection capacity of this apparatus. The results indicated that the feces collecting capacity of this apparatus was better than that of the control set with hanged nets during the first 24 hours with regular removal of collected feces at 2 hour intervals.
The second experiment is to compare the water quality parameter differences between systems with or without feces collecting apparatus. To start with, the base lines of two sets of systems (both without apparatus) were tested for 72 hour fixed amount of feed. The sum of feed in the 1st day was 420g--3% of the total biomass. The feeding was conducted only at the 1st day and water was changed after 72 hours. The results indicated the concentrations of ammonia-N, nitrite-N and nitrate-N in both systems (A & B) were similar and there were obvious decrease in ammonia-N after the stop-feed at the 1st day.
After the base line testing , then the experiments of feces collector effects on water quality were conducted. Three experiments were set for: 24 hour feed to satiation (150g/5 times/day), 48 hour fixed quantity feed (70g/2 times/day) and 72 hour fixed quantity feed (140g/2 times/day). The biomass was 7kg (for 24 hr and 48 hr) and 14kg (for 72 hr) respectively. In the 24 hr experiment, the ammonia-N conc. in B system (without feces collector) was above twice as much as that in the A system (with apparatus). In the 48 hr experiments, the conc. of suspended matter and ammonia-N in B system was higher than in A system, there were no obvious differences in the conc. of nitrite-N and nitrate-N, while the total bacteria count in A system was lower than in B system. In the 72 hr experiments, the ammonia-N conc. in B system was higher than in A system especially in the peak periods of 16 hr, 40 hr and 56 hr., the nitrite-N conc. of B system was higher than in A system during the earlier period from 0 to 32 hr., the nitrate-N conc. of B system was higher than in A system between 16 to 48 hr., the total bacteria count in B system was higher than in A system between 16 to 48 hr., and the conc. of suspended matter in B system was higher than in A system before 48 hr—yet got closer in concentration afterwards.
Throughout the experiments, there were no disease outbreak for the fishling in both A and B system and the water quality in A system (with feces collector) were better than in B system. The results of each water quality parameters indicated that this collecting apparatus could effectively remove feces and residue, and attained the function of helping clarify the water system. However, the collected feces had to be removed frequently during operation so that the clarifying effects would be decreased due to losing the feces by the flush of water in the apparatus. To generalize the concentration changes of ammonia-N, nitrite-N and nitrate-N in both systems, it was founded frequent water change and large-scaled feed would have bad influence on the stability of the micro flora in the biological filter bed, also caused the nitrite-N to accumulate in a short period. Therefore, after proper adjusting the feed (to 2% of the total biomass), the biological filter bed could be stabilized to remove the extra nitrite-N after 4 to 5 days.















目錄

謝辭......................................................Ⅰ
中文摘要..................................................II
英文摘要..................................................IV
目錄.....................................................VII
表目錄....................................................XI
圖目錄...................................................XIV
第一章 前言...............................................1
第二章 文獻探討
2-1 顆粒物質對養殖系統的影響...............................2
2-1-1 移除養殖系統顆粒物質............................3
2-2 氨氮毒性對養殖生物的影響...............................7
2-3 亞硝酸對養殖生物的影響.................................8
2-4 硝酸對養殖生物的影響...................................9
2-5 生物濾床...............................................9
2-6 氣舉式幫浦(Airlift Pump)原理............................12
2-6-1 管路內水流模式.................................13
2-6-2 氣舉式幫浦應用.................................14
2-6-3 氣舉式幫浦設計..................................15
第三章 材料與方法
3-1裝置概念...............................................17
3-1-1 原理............................................17
3-1-2 原型設計........................................19
3-2 循環水系統............................................23
3-3 試驗動物..............................................24
3-3-1 試驗環境........................................24
3-3-2試驗飼料........................................24
3-4 試驗流程..............................................26
3-4-1 72hr汙物收集試驗...............................27
3-4-2 72hr定量投餵(3%)試驗 (N=3)......................28
3-4-3 24hr飽食投餵試驗(N=3)..........................28
3-4-4 48hr定量投餵(2%)試驗(N=4)......................29
3-4-5 72hr定量投餵(2%)試驗(N=4)......................30
3-5 分析方法..............................................31
第四章 試驗結果
4-1未裝設集汙收集器之A、B兩系統(N=3)72hr定量投餵試驗....33
4-1-1氨氮濃度變化.....................................33
4-1-2 亞硝酸濃度變化..................................34
4-1-3 硝酸濃度變化....................................35
4-2 裝設集汙裝置組(A)與未裝設組(B)兩系統(N=3)24hr飽食投餵試
驗結果................................................35
4-2-1 氨氮濃度變化....................................36
4-2-2 亞硝酸濃度變化..................................36
4-2-3 懸浮固物變化....................................36
4-3裝設集汙裝置組(A)與未裝設組(B)兩系統(N=4)48hr定量投餵試
驗結果...............................................36
4-3-1 氨氮濃度變化...................................37
4-3-2 亞硝酸濃度變化.................................37
4-3-3 硝酸濃度變化...................................37
4-3-4 總生菌數變化...................................38
4-3-5 懸浮固物變化...................................38
4-4裝設集汙裝置組(A)與未裝設組(B)兩系統(N=4)72hr定量投餵試
驗結果...............................................38
4-4-1氨氮濃度變化....................................38
4-4-2亞硝酸濃度變化..................................39
4-4-3 硝酸濃度變化....................................40
4-4-4 總生菌數變化....................................41
4-4-5 懸浮固物變化....................................41
4-5 裝設集汙裝置收集組(A)與掛網收集組(B)兩系統72hr汙物集試
驗結果................................................41
第五章 討論
5-1污物收集器之設計過程以及與氣舉式幫浦之異同.............42
5-2裝設集汙器組(A)與未裝設組(B)兩系統顆粒物質移除之差異..45
5-3裝設集汙器組(A)與未裝設組(B)兩系統氨氮、亞硝酸及硝酸濃度
與生物濾床之效能......................................50
5-4裝設集汙器組(A)與未裝設組(B)兩系統氨氮、亞硝酸及硝酸濃度
之差異探討污物收集器之效能.............................54
5-5裝設集汙器組(A)與未裝設組(B)兩系統總生菌數移除之差
異................................. ...................57
第六章 結論..............................................58
第七章 參考文獻...........................................60
表目錄

表1-1未裝設集汙器之A、B兩系統的進水口(N=3)72hr定量投
餵氨氮濃度變化.....................................69
表1-2未裝設集汙器之A、B兩系統的過濾床水(N=3)72hr定量
投餵氨氮濃度變化...................................70
表1-3未裝設集汙器之A、B兩系統的表層水(N=3)72hr定量投
餵氨氮濃度變化.....................................71
表1-4未裝設集汙器之A、B兩系統的進水口(N=3)72hr定量投
餵亞硝酸濃度變化...................................72
表1-5未裝設集汙器之A、B兩系統的過濾床水(N=3)72hr定量
投餵亞硝酸濃度變化.................................73
表1-6未裝設集汙器之A、B兩系統的表層水(N=3)72hr定量投
餵亞硝酸濃度變化...................................74
表1-7未裝設集汙器之A、B兩系統的進水口(N=3)72hr定量投
餵硝酸濃度變化.....................................75
表1-8未裝設集汙器之A、B兩系統的過濾床水(N=3)72hr定量
投餵硝酸濃度變化...................................76
表1-9未裝設集汙器之A、B兩系統的表層水(N=3)72hr定量投
餵硝酸濃度變化.....................................77
表2-1裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=3)24hr飽
食投餵氨氮濃度變化.................................78
表2-2裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=3)24hr
飽食投餵亞硝酸濃度變化.............................79
表2-3裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=3)24hr
飽食投餵水中懸浮固物含量變化.......................80
表3-1裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)48hr定
量投餵氨氮濃度變化.................................81
表3-2裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)48hr定
量投餵亞硝酸濃度變化...............................82
表3-3裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)48hr定
量投餵硝酸濃度變化.................................83
表3-4裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)48hr定
量投餵水中總生菌數變化.............................84
表3-5裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)48hr定
量投餵水中懸浮固物含量變化.........................85
表4-1裝設集汙器組(A)與未裝設組(B)兩系統的進水口(N=4)72hr定
量投餵氨氮濃度變化.................................86
表4-2裝設集汙器組(A)與未裝設組(B)兩系統的過濾床水(N=4)72hr
定量投餵氨氮濃度變化...............................87
表4-3裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)72hr
定量投餵氨氮濃度變化...............................88
表4-4裝設集汙器組(A)與未裝設組(B)兩系統的進水口(N=4)72hr定
量投餵亞硝酸濃度變化...............................89
表4-5裝設集汙器組(A)與未裝設組(B)兩系統的過濾床水(N=4)72hr
定量投餵亞硝酸濃度變化.............................90
表4-6裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)72hr
定量投餵亞硝酸濃度變化.............................91
表4-7裝設集汙器組(A)與未裝設組(B)兩系統的進水口(N=4)72hr
定量投餵硝酸濃度變化...............................92
表4-8裝設集汙器組(A)與未裝設組(B)兩系統的過濾床水(N=4)72hr
定量投餵硝酸濃度變化...............................93
表4-9裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)72hr
定量投餵硝酸濃度變化...............................94
表4-10裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)72hr
定量投餵水中總生菌數變化...........................95
表4-11裝設集汙器組(A)與未裝設組(B)兩系統的表層水(N=4)72hr
定量投餵水中懸浮固物含量變化.......................96










圖目錄

圖2.1養質循環系統常搭配的懸浮固物(SS)移除方法、技術問題、適用對像...............................................5
圖2.2一般氣舉式幫浦簡圖(Douglas, 1987) ...................12
圖2.3 管路內水流模式......................................13
圖2.4氣舉式幫浦與PolyGeyser合併使用......................15
圖2.5幫浦啟動前後Submergence與Llift差異..................16
圖3.1汙物收集裝置原理簡圖.................................18
圖3.2育苗系統實照.........................................23
圖3.3育苗系統簡圖.........................................24
圖3.4掛網法圖示...........................................31
圖5.1三次設計原型其通入氣體量與出水量之關係圖.............97
圖5.2以裝置收集汙物組(A)與以手抄網收集汙物組(B)兩系統72hr
定量投餵(2%)汙物收集效果比較........................98
圖5.3未裝設集汙收集器之A、B兩系統的表層水(N=3)72hr定量投
餵試驗(3%)之氨氮、亞硝酸、硝酸濃度綜合比較..........99
圖5.4裝設集汙收集器(A)與未裝設(B)兩系統的表層水(N=3)24hr飽
食投餵試驗之氨氮、亞硝酸濃度綜合比較................100
圖5.5裝設集汙收集器(A)與未裝設(B)兩系統的表層水(N=4)48hr定量投餵(2%)試驗之氨氮、亞硝酸、硝酸濃度綜合比較......101
圖5.6裝設集汙器(A)與未裝設(B)兩系統的表層水(N=4)72hr定量投
餵(2%)試驗之氨氮、亞硝酸、硝酸濃度綜合比較...........102
圖5.7比較24hr飽食投餵試驗與48hr、72hr定量投餵試驗在各不同
時間點氨氮濃度的差異...............................103
圖5.8比較24hr飽食投餵試驗與48hr、72hr定量投餵試驗在各不
同時間點亞硝酸濃度的差異...........................104
圖5.9比較24hr飽食投餵試驗與48hr、72hr定量投餵試驗在各不同
時間點硝酸濃度的差異...............................105
圖6 未來生產線規劃.......................................59

Alabaster, J. S., Lloyd, R., 1982. Water quality criteria for freshwater fish. 2nd ed. London, Butterworth.
Alexander, B., Roland, R., 2005. Factors determining the
size of suspended solids in a flow-through fish farm. Aquacultural
Engineering . 33 (1), 1- 19.
Allan, G.L., Rowland, S.J., Parkinson, S., Stone, D.A.J., Jantrarotai, W.,
1999. Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: development of methods. Aquaculture. 170, 131-145.
Allema, J.E., 1987. Light induceed Nitrosomonas inhibition. Wat. Res. 21, 499-465.
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G., 1976.
Inhibition of nitrification by ammonia and nitrous acid. J.WPCF. 48
(5), 835-852.
Austreng, E., 1978. Digestibility determination in fish using chromic
oxide marking and analysis of contents from different segments of the
gastrointestinal tract. Aquaculture. 13, 265-272.
Awari, G.K., Ardhapurkar, P.M., Wakde, D.G., Bhuyar, L.B.,
2004. Perfomance analysis of air-lift pump design. Journal of
Mechanical Engineering Science. 218 (C), 1155-1161.
Balmelle, B., Nguyen, K.M., Capdeville, B., Comier, J.C., Deguin, A., 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Res. 14, 643-649.
Bergheim, A., Asgard, T., 1996. Waste production from aquaculture. In:
Bair, D.J., Beveridge, M.C.M., Kelly,L.A., Muir, J.F.,
Aquaculture and Water Resource Management. Blackwell Science,
Stirling . 50–80.
Bodansky, O.,1951. Methemoglobinemia and methemoglobin-producing compounds. Pharmacological Review. 3, 144-196.
Boller, M., Gujer, W., Tschui, M., 1994. Parameters affecting nitrifying
biofilm reactors. Wat. Sci. Technol. 29, 1–11.
Bovendeur, J., Zwaga, B.A., Lobee, B.G.J., Blom, J.H., 1990.
Fixed-biofilm reactors in aquacultural water recycle system, effect of
organic matter elimination on nitrification kinetics. Wat. Res. 24,
207–213.
Bower, C.E., Thomas, H.H., 1980. A simplified hydrazine-Reduction
method for determining high concentrations of nitrate in
recirculated sea-water. Aquaculture. 21, 281-286.
Castro, W.E., Zielinski, P.B., Sandifer, P.B., 1975. Performance characteristics of airlift pumps. World Mariculture Society Meeting. 6, 451-460.
Castro, W.E., Zielinski, P.B., 1980. Pumping characteristics of small
airlift pumps. Proceedings of the World Mariculture Society. 11, 163-174.
Chapman, P.E., Popham, J.D., Griffm, J., Michaelson, J., 1987.
Differentiation of physical from chemical toxicity in solid waste fish bioassay. Water, Air, and Soil Pollution .33, 295-308.
Chen, J.C., Kou, Y.Z., 1992. Effect of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture. 104, 249-260.
Chen, S., Malone, R.F., 1991. Suspended solids control in
recirculating aquaculture systems. Proceedings from the Aquaculture
Symposium. Cornell University. Ithaca, New York. April, 4-6.
Chen, S., Timmons, M.B., Aneshansley, D.J., Bisogni, J.J., 1993.
Suspended solids characteristics from recirculating aquacultural
systems and design implications. Aquaculture.112, 143-155.
Cho, C.Y., Bureau, D.P., 1997. Reduction of waste output from salmonid aquaculture through feeds and feeding. Prog. Fish Cult. 59, 155–160.
Colt J.E., Armstrong D.A., 1981. Nitrogen toxicity to crustaceans, fish and molluses. Proceeding of the Bio-Engineering Symposium for Fish Culture, Bethesda, MID:American Fisheries Society.
Daniel, S., Hagopian, J., Rilry, G., 1998 . A closer look at thebacteriology of nitrifaction. Aquacultural. Engineering. 18, 223-244.
Drolc A.K., Cotman, M., 2001. Evaluation of total nitrogen pollution reduction strategies in a river basin:A case study. Water Science and Technology. 44(6), 55-62.
Emerson, K., Russo, R.C., Lund, R.E., Thurston, R.V., 1975.
Aqueous ammonia equilibrium calculations: effects of pH and
temperature. J. Fish. Res. Bd. Can. 32, 2379-2383.
Fernandes, R.C., Semiat, R., DuckIer, A.E., 1983, Hydrodynamic model for gas-liquid slug flow in vertical tubes. AIChE Journal. 29(6), 981-989.
Fenchel, T.H., Jogensen, B.B., 1977 . Thefood chains of aquatic
ecosystems: the role of bacteria. Adv. Microbiol. Ecol. 1, 1-58.
Fromm, P.O., Gillette, J.R., 1986. Effect of ambient ammonia on and nitrogen excretion of rainbow trout(salmo gaindneri). Comp. Biochem. Physiol. 26, 887-896.
Glencross, B., Evans, D., Dods, K., McCafferty, P., Hawkins,W., Mass, R.,
Sipsas, S., 2005. Evaluation of the digestible value of lupin and
soybean protein concentrates and isolates when fed to rainbow trout,
Oncorhynchus mykiss, using either stripping or settlement faecal
collection methods. Aquaculture. 245, 211-220.
Gudipati, S., 2005. Distributed airlift systems design with application to recirculating soft shell crawfish shedding systems. Master’s thesis. Louisiana State University,Baton Rouge.
Infate, O.A., Marquez, M., Lewis, W.M., Weibezahn, F.H., 1979. Conditions leading to mass mortality of fish and zooplankton in
Lake Valencia, Venezuela. Acta Cientifica Venezolana. 30, 67-73.
Julio, A.C., Alvaro, A., Annabella, S., 2005. Nitrate toxicity to
aquatic animals: a review with new data for freshwater invertebrates.
Chemosphere. 58, 1255–1267.
Kiese, M., 1974. Methemoglobinemia.A comprehensive treatise CRC Press,Cleveland.
Laio, M.R., 1980. The chemical biology of fishes. Academic Press, New
York.
Leid, E., Julshamn, K., Braekkan, O.R., 1982. Determination of protein
digestibility in Atlantic cod (Gadus morhua) with internal and external indicators. Can. J. Fish. Aquat. Sci. 39, 854-861.
Loyless, J.C., and Malone, R.F., 1998. Evaluation of airlift pump
capabilities for water delivery, aeration, and degasification for
application to recirculating aquaculture systems. Aquacultural Engineering. 18, 117-233.
Lucia Solorzano, 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography. 14, 799-801.
Magor, B.G., Gill., G., 1988. Histopathology of juvenile Oncorhynchus
kisutch exposed to suspended wood debris. Canadian Journal of Zoology. 66, 2164 - 2169.
Mao, Z.S., DuckIer, A.E., 1985. "Rise velocity of a taylor bubble in a train of such bubbles in a flowing liquid. Chemical Engineering. Science. 40(11), 2158-2160.
Mauret, M., Paul, E., Puech-Coster, E., Maurette, M.T., Baptiste, P., 1996. Application of experimental research methodology to the study of nitrification in mixed culture. Wat. Sci. Tech. 34(1-2), 245-252.
McCoy, E.F., 1972. The role of bacteria in the nitrogen cycle of lakes. U.S Environmental Protection Agency, Office of Research and Monitoring. Water Pollution Control Research Series, Washington, D.C.
McMillan, J.D., Wheaton, F.W., Hochheimer, J.N., Soares, J., 2002.
Pumping effect on particle sizes in a recirculating aquaculture system. Aquacultural Engineering. 27(1), 53-59.
Neori, A., Chopin, T., Truell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish. C., 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture. 231(1-4) , 361-391.
Nick, C.P., Mary, A.S., 1987. Design of airlift pumps for
water circulation and aeration in aquaculture. Aquacultural Engineering. 6(2),97-110.
Polanco, F.F., Villaverde, S., Garcia, P. A., 1994. Temperature effect on
nitrifying bacteria activity in biofilters: Activation and free ammonia
inhibition. Wat. Sci. Tech. 30(11), 121-130.
Reinemann, D.J., 1987. A theoretical and experimental study of airlift pumping and aeration with reference to aquacultural applications. Doctoral dissertation. Cornell University.
Reinemann, D.J., Hansen, J., Raabe, M., Mallison, J., Byrd, V., 2001.
Demonstration of airlift pump and lignocellulosics in recirculation
aquaculture systems. Energy Center of Wisconsin, Madison, Wisconsin, 21 pp.
Rand, M.C., Greenberg, A.E., Taras. M.J., 1976 . Standard method
for the examination of water and wastewater. American Public
Health Association. Washington, D. C.
Robert, C.S., Chris, R.P., 2005. Solids removal in a recirculating
aquaculture system where the majority of flow bypasses the microscreen filter. Aquacultural Engineering . 33(3), 214- 224.
Ronald, F.M., Sripavani, G., 2005. Airlift-PolyGeyser
combination facilitates decentralized water treatment
in recirculating marine hatchery systems. Aquaculture and Stock
Enhancement of Finfish. 11(7-9), 43-50.
Schoberl, P., Engel, H., 1964. Dra verhalten der nitrification kakterien
gegenuber gelostem. Archiv. Fin. Mikrobiolgie. pp.393-400.
Shammas, N.K., 1986. Interactions of temperature, pH, and biomass on the nitrification process. Journal WPCF. 58(1), 52-59.
Sharma, B., Ahler, R.C., 1977. Nitrification and nitrogen removal.
Wat. Res. 11, 897-925.
Shwedler, T.E., Tucker, C.S., 1983. Empirical relationship between
percent methemoglobin in channel catfish and dissolved nitrite and
chloride In ponds. Transactions of the American Fisheries Society.
112, 117-119.
Spotte, S.H., 1970. Fish and invertebrate culture. John Wiley and Sons,
New York.
Sripavani G., 2005. Distributed sirloft systems desigh with
application to recirculating soft shell crawfish shedding systems. A thesis of The Department of Civil and Environmental Engineering,
21 pp.
Su-Jun, T., Jiann-Chu C., 2002. Acute toxicity of nitrate on Penaeus monodon juveniles at different salinity levels. Aquaculture.
213(1-4), 163-170.
Tokar, J.M., Harvey, G.R., Chesal, L.A., 1981. A gas lift system for large volume water sampling. Deep-Sea Res. 28A (11), 1395-9.
Villaverde S., Emcina, P.A., Polanco, F., 1997. Influence of pH over
nitrifying biofilm activity in submerged biofilters. Wat. Res. 31(5),
1180-1186.
Weber, A.S., Tchohanoglous, G., 1984. Nitrification in water
hyacinth treatment systems. M. ASCE. 111, 59-82.
Wheaton, F.W., 1977. Aquacultural Engineering. Wiley, New York.
William, M., Lewis, J.R., Donald, P.M., 1986. Toxicity of nitrite to
fish: a review. American Fisheries Society. 115, 183-195.
Wong-Chong, G.M., Loehr, R.C., 1978. Kinetics of microbial nitrification: nitrite-nitrogen oxidation. Wat. Res. 12, 605-609.
Wood, E.D., Armstrong, F.A.J., Richards, F.A., 1967. Determination
of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. U. K. 47, 23-31.
Yang, L., Alleman, J.E., 1992. Investigation of batchwise nitrite build-up by enriched nitrification culture. Wat. Res. 26(5-6), 997-1005.
Zenaida, O.G., James, D., Gakuo, N., Kate, L., 2009. Airlift technology models for aquaculture applications with a focus on latin america:predictive tools for system performance and optimization. 7th Latin American and Caribbean Conference for Engineering and
Technology. (2-5), 1-9.
李瑞,1997。日本鰻露天養殖池中顆粒物質之物性解析。國立台灣大學農工所碩士論文。
佐野和生,1987。水產養殖用水第Ⅱ集,253頁。
侯文祥,1994。循環式養鰻系統水環境管理與污濁固形物通量之關
係。中國農業工程學報,40 (1):55~63 頁。
侯文祥,1996。循環水系統之評估與推廣-養殖用水(一)。國立台灣
大學水工試驗所研究報告,113頁。
陳威光,1997 。應用氣泡柱於循環水養鰻系統中去除顆粒之效率評
估。台灣水產學會刊,25(2):117~127頁。
侯文祥、顏在宏,2004。循環水養殖系統之濾材物性與配置對水處理效率影響研究。農業工程學報,50(2):49-63頁。
柯清水,2001。養殖池中硝化濾床對石斑稚魚育成之影響。國立中山大學海洋資源研究所碩士論文。
曾國鋒,2000。硝化生物濾床原理,循環水養殖技術推廣訓練講習教
材。農委會編印,67~85 頁。
陳威光,1997。應用泡沫分離法去除循環水養鰻系統中之顆粒。國立台灣大學農工所碩士論文。
陳敏隆、吳豐成、邱英哲,2006。沸石粉對水質與微生物之影響。
水事專訓,16:6-8頁。
鄭安倉,1998。黑鯛對不同原料消化率之研究。國立台灣海洋大學水產養殖學系碩士論文。
劉長發、綦志仁、何潔、張俊新,2002。環境友好的水產養殖業─零污水排放循環水產養殖系統。大連水產學院學報,17(3):220-226頁。
劉壽春、周康、鐘賽意、李平蘭、馬長偉、彭朝輝,2008。淡水養殖羅非魚中病原菌和腐敗菌的分離與鑑定初探。食品科學,(5):327-332頁。
賴盈方,2006。點帶石斑糞便收集及不同原料消化率之研究。國立台灣海洋大學水產養殖學系碩士論文。
謝武峯,2003。零換水生物安全性養蝦系統之研究。國立臺灣海洋大 學水產養殖學系碩士學位論文。
謝駿、方秀珍、繆為民、白云飛、馮飛玉、洪紹海,2000。魚池中不同生物體表面水生細菌區系分布的初步研究。大連水產學院學報,(1): 23-28頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔