(3.236.122.9) 您好!臺灣時間:2021/05/09 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李鎮文
研究生(外文):Chen-Wen Li
論文名稱:飼養密度與飼料種類在兩種養殖系統中對紫海膽與白棘三列海膽成長、活存與生殖腺的影響
論文名稱(外文):Effects of stocking density and feed type in two kinds of cultivated system on the growth, survival and gonad somatic index of sea urchin Anthocidaris crassispina and Tripneustes gratilla
指導教授:沈士新沈士新引用關係
指導教授(外文):Shyn-Shin Sheen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:110
中文關鍵詞:白棘三列海膽紫海膽養殖系統飼養密度人工飼料龍鬚菜生殖腺指數
外文關鍵詞:Tripneustes gratillaAnthocidaris crassispinacultivated systemstocking densityArtificial dietGracilaria sp.gonad somatic index
相關次數:
  • 被引用被引用:1
  • 點閱點閱:691
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:209
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的為探討在不同的養殖系統中以不同飼養密度與投餵不同飼料對台灣兩種常見的食用海膽白棘三列海膽Tripneustes gratilla與紫海膽Anthocidaris crassispina其成長、活存與生殖腺的影響。
實驗一為3x2(密度x飼料)的複因子實驗,在平面池(60x40x70 cm)以三種不同的飼養密度1.44 kg/m2、2.88 kg/m2與4.32 kg/m2與投餵人工飼料或龍鬚菜Gracilaria sp.養殖平均初重約70 g的紫海膽,實驗為期三個月。實驗結果增重率以餵食人工飼料在蓄養密度2.88 kg/m2的組別最高(5.47±1.39%),而餵食人工飼料在蓄養密度4.32 kg/m2的組別最低(0.95±0.15%)。生殖腺指數以餵食人工飼料在蓄養密度4.32 kg/m2的組別(9.49±0.63%)顯著低於其他組別(11.91±0.52–12.48±0.38%)。在不同飼料與不同密度的複因子之間對海膽增重率與生殖腺指數影響上,在飼料方面,不論餵食龍鬚菜或人工飼料其增重率與生殖腺指數皆無顯著差異;在密度方面,蓄養密度為2.88 kg/m2的組別其增重率顯著高於1.44 kg/m2與4.32 kg/m2的組別,蓄養密度為1.44 kg/m2與2.88 kg/m2的組別其生殖腺指數顯著高於4.32 kg/m2的組別。各處理組的存活率在85%以上。
實驗二為3x2(密度x飼料)的複因子實驗,在立體養殖設備(60x40x15 cm)以三種不同的飼養密度0.68 kg/m2、1.36 kg/m2與2.04 kg/m2與投餵人工飼料或龍鬚菜Gracilaria sp.養殖平均初重約34 g的紫海膽,實驗為期三個月。實驗結果各組別增重率皆無顯著差異(9.72±2.28–14.07±4.27%)。生殖腺指數以餵食人工飼料的各組別(10.34±1.65–10.80±2.37%)顯著高於餵食龍鬚菜的各組別(5.69±1.23– 6.19±0.22%)。在不同飼料與不同密度的複因子之間對海膽增重率與生殖腺指數影響上,在飼料方面,餵食龍鬚菜或人工飼料其增重率無顯著差異,而餵食人工飼料的生殖腺指數顯著高於餵食龍鬚菜;在密度方面,在三種不同的蓄養密度下各組別增重率與生殖腺指數皆無顯著差異。各處理組的存活率在90%以上。
實驗三為3x2(密度x飼料)的複因子實驗,在平面池(60x40x70 cm)以三種不同的飼養密度1.71 kg/m2、3.42 kg/m2與5.13 kg/m2與投餵人工飼料或龍鬚菜Gracilaria sp.養殖平均初重約140 g的白棘三列海膽,實驗為期三個月。實驗結果增重率以餵食人工飼料的各組別(15.71±2.95–23.08±2.71%)顯著高於餵食龍鬚菜的各組別(1.51±6.28– 3.24±0.72%)。在餵食龍鬚菜的各密度組別中增重率沒有顯著差異;而餵食人工飼料的各密度組別中增重率隨著密度提高而降低。生殖腺指數以餵食人工飼料的各組別(5.74±1.49–6.48±0.23%)顯著高於餵食龍鬚菜的各組別(1.38±0.19–2.60±1.22%)。在不同飼料與不同密度的複因子之間對海膽增重率與生殖腺指數影響上,在飼料方面,餵食人工飼料其增重率與生殖腺指數皆顯著高於餵食龍鬚菜;在密度方面,在三種不同的蓄養密度下各組別增重率與生殖腺指數皆無顯著差異。各處理組的存活率在85%以上。
實驗四為3x2(密度x飼料)的複因子實驗,在立體養殖設備(60x40x15 cm)以三種不同的飼養密度1.86 kg/m2、3.72 kg/m2與5.58 kg/m2與投餵人工飼料或龍鬚菜Gracilaria sp.養殖平均初重約155 g的白棘三列海膽,實驗為期三個月。實驗結果增重率以餵食人工飼料的各組別(10.48±1.59–16.65±6.89%)顯著高於餵食龍鬚菜的各組別(2.55±0.65–3.98±1.74%)。生殖腺指數以餵食人工飼料的各組別(11.04±1.89–12.76±1.13%)顯著高於餵食龍鬚菜的各組別(6.51±1.39– 9.72±1.38%)。在不同飼料與不同密度的複因子之間對海膽增重率與生殖腺指數影響上,在飼料方面,餵食人工飼料其增重率與生殖腺指數皆顯著高於餵食龍鬚菜;在密度方面,在三種不同的蓄養密度下各組別增重率皆無顯著差異,而生殖腺指數以蓄養密度3.72 kg/m2的組別顯著高於5.58 kg/m2的組別。各處理組的存活率在85%以上。

The objective of this study was to investigate the effect of different stocking density and feed on the growth, survival and gonad somatic index of sea urchin Anthocidaris crassispina and Tripneustes gratilla in two cultivated systems. Four different experiments were conducted.
Experiment I was a 3x2 (density x diet) completely crossed design. Sea urchins Anthocidaris crassispina (average weight 70 g) were reared in plane cultivated system for 3 months at stocking density of 20(1.44 kg), 40(2.88 kg) and 60(4.32 kg) sea urchins per m2, respectively. They were fed Gracilaria sp. and artificial diets. The result showed sea urchins fed artificial diets at stocking density of 40(2.88 kg) per m2 had the highest weight gain(5.47±1.39%) among all treatments. Those fed artificial diets at stocking density of 60(4.32 kg) per m2 had the lowest weight gain(0.95±0.15%); while sea urchins fed artificial diets at stocking density of 60(4.32 kg) per m2 had significantly lower gonad somatic index(9.49±0.63%) compared to other treatments (11.91±0.52– 12.48±0.38%). In terms of diet, whether fed Gracilaria sp. or artificial diets, the weight gain and gonad somatic index had no significant differeces. In terms of density, sea urchins stocked at 40(2.88 kg) per m2 had significant higher weight gain, stocking density at 20(1.44 kg) and 40(2.88 kg) per m2 had significant higher gonad somatic index compared treatment at density at 60(4.32 kg) per m2. The survival rate was above 85% in all treatments.
Experiment II was a 3x2 (density x diet) completely crossed design. Sea urchins Anthocidaris crassispina (average weight 34 g) were reared in tier cultivated system for 3 months at stocking density of 20(0.68 kg), 40(1.36 kg) and 60(2.04 kg) sea urchins per m2, respectively. They were fed Gracilaria sp. and artificial diets. The result showed all treatments had no significant differences in weight gain (9.72±2.28–14.07±4.27%), whereas gonad somatic index in the groups fed artificial diets (10.34±1.65–10.80±2.37%) was significantly higher compared to the groups that fed Gracilaria sp. (5.69±1.23–6.19±0.22%). In terms of diet, whether fed Gracilaria sp. or artificial diets, the weight gain had no significant differeces, whereas fed artificial diets had significant higher gonad somatic index. In terms of density, there were no significant differences in weight gain as well as in gonad somatic index among all treatments. The survival rate was above 90% in all treatments.
Experiment III was a 3x2 (density x diet) completely crossed design. Sea urchins Tripneustes gratilla (average weight 140 g) were reared in plane cultivated system for 7 weeks at stocking density of 12(1.71 kg), 24(3.42 kg) and 36(5.13 kg) sea urchins per m2, respectively. They were fed Gracilaria sp. and artificial diets. The result showed the weight gain in the groups fed artificial diets (15.71±2.95–23.08±2.71%) was significantly higher conpared to the groups that fed Gracilaria sp. (1.51±6.28– 3.24±0.72%), the weight gain had no significant differences in all densities that fed Gracilaria sp., whereas the weight gain decreased when the stocking density increases in sea urchins fed artificial diets. The gonad somatic index in the groups fed artificial diets (5.74±1.49–6.48±0.23%) were significantly higher than the groups fed Gracilaria sp. (1.38±0.19–2.60±1.22%). In terms of diet, fed artificial diets had significant higher weight gain and gonad somatic index. In terms of density, there were no significant differeces in weight gain and gonad somatic index. The survival rate was above 85% in all treatments.
Experiment IV was a 3x2 (density x diet) completely crossed design. Sea urchins Tripneustes gratilla (average weight 140 g) were reared in tier cultivated system for 7 weeks at stocking density of 12(1.86 kg), 24(3.72 kg) and 36(5.58 kg) sea urchins per m2, respectively. They were fed Gracilaria sp. and artificial diets. The result showed the weight gain in the groups fed artificial diets (10.48±1.59–16.65±6.89%) was significantly higher than the groups that fed Gracilaria sp. (2.55±0.65–3.98±1.74%), the gonad somatic index in the groups fed artificial diets (11.04±1.89– 12.76±1.13%) were significantly higher than the groups fed Gracilaria sp. (6.51±1.39–9.72±1.38%). In terms of diet, fed artificial diets had significant higher weight gain and gonad somatic index. In terms of density, there were no significant differences in weight gain, however the gonad somatic index in 3.72 kg per m2 was significantly higher than 5.58 kg per m2. The survival rate was above 85% in all treatments.

謝辭.............................................................................................................i
中文摘要....................................................................................................ii
英文摘要....................................................................................................v
目錄.........................................................................................................viii
表目錄.......................................................................................................ix
圖目錄......................................................................................................xii
前言............................................................................................................1
文獻整理....................................................................................................5
材料與方法..............................................................................................19
結果..........................................................................................................26
討論..........................................................................................................32
結論..........................................................................................................43
參考文獻..................................................................................................44
圖表..........................................................................................................65

于名振,2001。動物系統分類綱要。水產出版社,台北基隆。

台灣地區漁業統計年報,2005。行政院農委會漁業署。

任淑仙,1995。無脊椎動物學(下冊)。淑馨出版社,台北市。309-315頁。

李坤瑄、陳章波,1994。台灣常見的棘皮動物。國立海洋生物博物館籌備處出版。

林順康,1995。紫海膽Anthocidaris crassispina 和口鰓海膽Stomopneustes variolaris 的生殖週期和晚期幼生餌料實驗。國立台灣大學漁業科學研究所碩士學位論文。

孫瑋育,2006。飼料中不同蛋白質來源及量對紫海膽(Anthocidaris crassispina)體成長及生殖腺肥滿度之影響。國立台灣海洋大學水產養殖學系碩士論文。

陳世新,2008。飼料中不同動物性及植物性蛋白質比例對紫海膽(Anthocidaris crassispina)成長及生殖腺的影響。國立台灣海洋大學水產養殖學系碩士論文。

陳高松、李英周,2004。台灣東北部卯澳灣海域之海膽生物多樣性研究。行政院農委會特有生物研究保育中心,南投縣。特有生物研究期刊6(1): 1-16頁。

常亞青、丁君、宋堅、楊威,2004。海參、海膽生物學研究與養殖。海洋出版社,北京。221-284頁。

曾義盛,2003。飼料中添加不同蛋白質含量對馬糞海膽成長的影響。台灣水產學會刊,A-2-3。

張秉宏,2003。馬糞海膽Tripneustes gratilla (Linnaeus)繁養殖技術之開發。國立屏東科技大學水產養殖學系碩士論文。

張錦宜,2005。養殖九孔的病害。行政院農委會水產試驗所水試專訊。45-46頁。

蔡宏益,2006。飼料中添加不同油脂的來源與量對紫海膽成長的影響及添加不同的誘引物對紫海膽的誘引效果。國立台灣海洋大學水產養殖學系碩士論文。

鄭金華,2004。海膽的繁養殖技術與資源復育。行政院農委會水產試驗所暨台北縣貢寮區漁會編印。

鄭金華,2005。海膽繁養殖成功、帶動海洋牧場新產業。行政院農委會水產試驗所水試專訊。第36頁。

Aas, K., 2004. Technology of sea-based farming of sea urchins. In: Lawrence, J.M., Guzmán, O. (Eds.), Sea Urchins: Fisheries and Ecology. DEStech Publications, Lancaster, USA, pp. 366–373.

Akiyama, T., Unuma, T., Yamamoto, T., 1997. An evaluation of amino acid sources and binders in semipurified diet for red sea urchin Pseudocentrotus depressus. Fish. Sci. 63, 881–886.

Akiyama, T., Unuma, T., Yamamoto, T., 2001. Optimum protein level in a purified diet for young red sea urchin Pseudocentrotus depressus. Fish. Sci. 67, 361–363.

Andrew, N.L., 1986. The interaction between diet and density influencing reproductive output in the echinoid Evechinus chloroticus (Val.). J. Exp. Mar. Biol. Ecol. 97, 63–79.

Andrew, N.L., 1994. Survival of kelp adjacent to areas grazed by sea urchins in New South Wales, Australia. Aust. J. Ecol. 19, 466–472.

Andrew, N.L., Agatsuma, Y., Ballesteros, E., Bazhin, A.G., Creaser, E.P., Barnes, D.K.A., Botsford, L.W., Bradbury, A., Campbell, A., Dixon, J.D., Einarsson, S., Gerring, P.K., Hebert, K., Hunter, M., Hur, S.B., Johnson, C.R., Juinio-Menez, M.A., Kalvass, P., Miller, R.J., Moreno, C.A., Palleiro, J.S., Rivas, D., Robinson, S.M.L., Schroeter, S.C., Steneck, R.S., Vadas, R.L., Woodby, D.A., Xiaoqi, Z., 2002. Status and management of world sea urchin fisheries. Oceanogr. Mar. Biol. Annu. Rev. 40, 343–425.

Andrew, N.L., Choat, J.H., 1985. Habitat related differences in the survivorship and growth of juvenile sea urchins. Mar. Ecol. Prog. Ser. 27, 155–161.

AOAC (Association of Official Analytical Chemists), 1984. Official Methods of Analysis, 14th edition, AOAC, Arligton, VA, 1141 pp.

Barker, M.F., Keogh, J.A., Lawrence, J.M., Lawrence, A.L., 1998. Feeding rate, absorption efficiencies, growth, and enhancement of gonad production in the New Zealand sea urchin Evechinus chloroticus Valenciennes (Echinoidea: Echinometridae) fed prepared and natural diets. J. Shellfish Res. 17, 1583–1590.

Bjöernsson, B., 1994. Effects of stocking density on growth rate of halibut (Hippoglossus hippoglossus L.) reared in large circular tanks for three years. Aquaculture 123, 259–270.

Botsford, L.W., Campbell, A., Miller, R., 2004. Biological reference points in management of North American sea urchin fisheries. Can. J. Aquac. Sci. 61, 1325–1337.

Burke, R.D., 1987. Echinoderm metamorphosis: comparative aspects of the change in form. In: Jangoux, M., Lawrence, J.M. (Eds.), Echinoderm studies, vol. 3. Balkema, Rotterdam, pp. 81–108.

Cellario, C., Fenaux, L., 1990. Paracentrotus lividus (Lamarck) in culture (larval and benthic phases): parameters of growth observed during two years following metamorphosis. Aquaculture 84, 173–188.
Chao, S.M., 2000. The irregular sea urchins (Echinodermata: Echinoidea) from Taiwan with descriptions of six new records. Zool. Stu. 39, 250–265.

Chen, C.P., 1989. Reproductive biology of echinoderms in Taiwan. Acta Oceanographica Taiwanica, 24, 133–138.

Chen, C.P., Chang, K.H., 1981. Reproductive periodicity of the sea urchin, Tripneustes gratilla (L.) in Taiwan compared with other regions. Internat. J. Invertebr. Reprod. 3, 309–319.

Christiansen, J.S., Siikavuopio, S.I., 2007. The relationship between feed intake and gonad growth of single and stocked green sea urchin (Strongylocentrotus droebachiensis) in a raceway culture. Aquaculture 262, 163–167.

Christiansen, J.S., Svendsen, Y.S., Jobling, M., 1992. The combined effects of stocking density and sustained exercise on the behaviour, food intake, and growth of juvenile Arctic charr (Salvelinus alpinus). Can. J. Zool. 70, 115–122.

Cook, E.J., Kelly, M.S., McKenzie, J.D., 1998. Somatic and gonadal growth of the sea urchin Psammechinus miliaris (Gmelin) fed artificial salmon feed compared with a macroalgal diet. J. Shellfish Res. 17, 1549–1555.

Cruz-Garcia, C.De la, Lopez-Hernandez, J., Gonzalez-Castro, M.J., De Quiros, A.R.B., Simal-Lozano, J., 2000. Protein, amino acid and fatty acid contents in raw and canned sea urchins (Paracentrotus lividus) harvested in Galicia (NW Spain). J. Sci. Food Agric. 80, 1189–1192.

Daggett, T.L., Pearce, C.M., Robinson, S.M.C., 2006. A comparison of three land-based containment systems for use in culturing green sea urchins, Strongylocentrotus droebachiensis (Müller) (Echinodermata: Echinoidea). Aquac. Res. 37, 339–350.

de Jong-Westman, M., March, B.E., Carefoot, T.H., 1995. The effect of different nutrition formulations in artificial diets on gonad growth in the sea urchin Strongylocentrotus drobachiensis. Can. J. Zool. 73, 1495–1502.

Devin, M.G., 2002. Land-based echinoculture: a novel system to culture adult sea urchins. In: Yokota, Y., Matranga, V., Smolenicka, Z. (Eds.), The Sea Urchin: From Basic Biology to Aquaculture. A. A. Balkema Publishers, Swets and Zeitlinger, Lisse, Netherlands, pp. 145–159.

Ebert, T.A., 1967. Growth and repairs of spines in the sea urchin Strongylocentrotus purpuratus. (Stimpson). Biol. Bull. 133, 141–149.

FAO (Food and Agriculture Organization of united Nations), 2010. Fisheries and Aquaculture Information and Statistics Service, 20/06.

Fernandez, C., Boudouresque, C.F., 1998. Evaluating artificial diets for small Paracentrotus lividus (Echinodermata: Echinoidea). In: Mooi, R., Telford, M. (Eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam, pp. 651–656.
Fernandez, C., Boudouresque, C.F., 2000. Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar. Ecol. Prog. Ser. 204, 131–141.

Fernandez, C., Caltagirone A., 1994. Growth rate of adult sea urchins, Paracentrotus lividus, in a lagoon environment: the effect of different feed types. In: David, B., Guille, A., Féral, J.P., Roux, M. (Eds.), Echinoderms through Time. A. A. Balkema, Rotterdam, pp. 655–660.

Fernandez, C., Dombrowski, E., Caltagirone, A., 1995. Gonadic growth of adult sea urchin, Paracentrotus lividus (Echinodermata: Echinoidea) in rearing: the effect of different diet types. In: Emson, R.H., Smith, A.B., Campbell, A.C. (Eds.), Echinoderm Research 1995. A. A. Balkema, Rotterdam, pp. 269–275.

Fernandez, C., Pergent, G., 1998. Effect of different formulated diets and rearing condition on growth parameters in the sea urchin Paracentrotus lividus. J. Shellfish Res. 17, 1571–1581.

Floch, J., Lees, M., Sloane-Stanely, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226, 497-509.

Fuji, A., 1967. Ecological studies on the growth and food consumption of Japanese common littoral sea urchin Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish., Hokkaido Univ., vol. 15. The Faculty of Fisheries, Hakodate, Japan, pp. 82–160.

Giudice, G., 1973. Developmental biology of the sea urchin embryo. Academic Press, New York and London, 469 pp.

Gonor, J.J., 1972. Gonad growth in the sea urchin Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumption of gonad index methods. J. Exp. Mar. Biol. 19, 89–103.

Gonor, J.J., 1973. Reproductive cycles in Oregon populations of the echinoid, Strongylocentrotus purpuratus. (1) annual gonad growth and ovarian gametogenic cycles. J. Exp. Mar. Biol. Ecol. 12, 45–64.

Gonzalez, M.L., Perez, M.C., Lopez, D.A., Pino, C.A., 1993. Effects of algal diet on the energy available for growth of juvenile sea urchins Loxechinus albus (Molina, 1782). Aquaculture 115, 87–95.

Gordon, I., 1926. The development of the calcareous test of Echinus miliaris. Philos. Trans. R. Soc. Lond. Ser. 214, 259–312.

Gosselin, P., Jangoux, M., 1998. From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinometrida: echinoida). Zoomorphology. 118, 31–43.

Grosjean, P., Spirlet, C., Gosselin, P., Vaitilingon, D., Jangoux, M., 1998. Land-based, closed-cycle echiniculture of Paracentrotus lividus (Lamarck) (Echinoidea: Echinodermata): a long-term experiment at a pilot scale. J. Shellfish Res. 17, 1523–1531.

Grosjean, P., Spirlet, C., Jangoux, M., 1996. Experimental study of growth in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). J. Exp. Mar. Biol. Ecol. 201, 173–184.

Hagen, N.T., 1996. Echinoculture: from fishery enhancement to closed cycle cultivation. World Aquacult. 27, 6–19.

Hatcher, B.G., Hatcher, A.I., 1997. Research directions and management options for sea urchin culture in Nova Scotia. Aquacult. Assoc. Can. 97, 5–7.

Himmelman, J.H., 1978. Reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis. Can. J. Zool. 56, 1828–1836.

Himmelman, J.H., Lavergne, Y., Axelsen, F., Cardinal, A., Bourget, E., 1983. Sea urchins in the Saint Lawrence Estuary: their abundance size-structure, and suitability for commercial exploitation. Can. J. Fish. Aquat. Sci. 40, 474–486.

Hinegardner, R.T., 1969. Growth and development of the laboratory cultured sea urchin. Biol. Bull. 137, 465–475.

Hooper, R.G., Cuthbert, F.M., Patey, D., 1994. Newfoundland sea urchins: studies on roe quality, yield and maturation in relation to specific habitats around the coasts of Newfoundland. Government of Newfoundland and Labrador, Department of Fisheries, 93 pp.

Iwasaki, M., Harada, R., 1985. Proximate and amino acid composition of the roe and muscle of selected marine species. J. Food Sci. 50, 1585–1587.

James, P.J., 2006. A comparison of roe enhancement of the sea urchin Evechinus chloroticus in sea-based and land-based cages. Aquaculture 253, 290–300.

Jobling, M., 1993. Bioenergetics: feed intake and energy partitioning. In: Ranking, J.C., Jensen, F.B. (Eds.), Fish Ecophysiology. Chapman and Hall, London, pp. 1–44.

Jobling, M., 1994. Biotic factors and growth performance. In: Jobling, M. (Ed.), Fish Bioenergetics, Fish and Fisheries Series, vol. 13. Chapman and Hall, London, pp. 155–201.

Joyner, S.P., 1985. Sas/STAT guide for Personal Computers Statistcal Analysis System Institute, Cary, NC, USA.

Kalvas, P., 1992. The northern California commercial sea urchin fishery: a case study. In: The management and enhancement of sea urchins and other kelp bed resources: a Pacific rim perspective. Report No. T-CSGCP-028, California Sea Grant College, Scripps Institution of Oceanography, La Jolla, California. (not paginated).

Kato, S., 1972. Sea urchin fishery starts. Comm. Fish. Rev. US. Dept. Comm. Publ. 34–36.

Kearns, J.P., Lawrence, J.M., 2002. Commerical feeds for the sea urchin. Aqua. Feed. Internation. 26–30.

Keats, D.W., Steele, D.H., South, G.R., 1983. Food relations and short term aquaculture potential of the green sea urchin (Strongylocentrotus droebachiensis) in Newfoundland. Mar. Sci. Res. Lab. Mem. Univ. St. John’s Canada 24, 1–24.

Keesing, J.K., Hall, K.C., 1998. Review of harvests and status of world sea urchin fisheries points to opportunities for aquaculture. J. Shellfish Res. 17, 1597–1604.

Kelly, M.S., Brodie, C.C., Mckenzie, J.D., 1998a. Somatic and gonadal growth of sea urchin Psammechinus miliaris (Gmelin) maintained in polyculture with the Atlantic salmon. J. Shellfish Res. 17, 1557–1562.

Kelly, M.S., McKenzie, J.D., Brodie, C.C., 1998b. Sea urchin in polyculture: the way to enhanced gonad growth? In: Mooi, R., Telford, M. (Eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam, pp. 707–711.

Kennedy, E.J., Robinson, S.M.C., 2005. Effect of protein source and concentration on somatic growth of juvenile green sea urchins Strongylocentrotus droebachiensis. J. World Aquac. Soc. 36, 320–336.

Kenner, M.C., 1992. Population dynamics of the sea urchin Strongylocentrotus purpuratus in a central California kelp forest: recruitment, mortality, growth and diet. Mar. Biol. 112, 107–118.
Klinger, T.S., Lawrence, J.M., Lawrence, A.L., 1994. Digestive characteristics of the sea urchin Lytechinus variegates (Lamarck) (Echinodermata: Echinoidea) fed prepared feeds. J. World Aquac. Soc. 25, 489–496.

Klinger, T.S., Lawrence, J.M., Larwrence, A.L., 1997. Gonad and somatic production of Strongylocentrotus drobachiensis fed manufactured feeds. Bull. Aquacult. Assoc. Can. 97, 35–37.

Klinger, T.S., Lawrence, J.M., Lawrence, A.L., 1998. Digestion, absorption and assimilation of prepared feeds by echinoids. In: Mooi, R., Telford, M. (Eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam, pp. 713–721.

Kuroki, K., Tashiro, Y., 1991. Studies on the development of the feed for subtropic sea urchin Tripneustes gratilla. Rep. Kagoshima Pref. Exp. Stn. 39.

Lambert, Y., Dutil, J.D., 2001. Food intake and growth of adult Atlantic cod Gadus morhua (L.) reared under different conditions of stocking density, feeding frequency and size-grading. Aquaculture 192, 233–247.

Larson, B.R., Vadas, R.L., Keser, M., 1980. Feeding and nutritional ecology of the sea urchin Strongylocentrotus droebachiensis in Marine, USA. Mar. Biol. 59, 49–62.

Lawrence, J.M., Agatsuma, Y., 2001. The ecology of Tripneustes. In: Lawrence, J.M. (Ed.), Edible Sea Urchin: Biology and Ecology. Elsevier, Amsterdam, Netherlands, pp 395–413.

Lawrence, J.M., Fenaux, L., Corre, M.C., Lawrence, A.L., 1992. The effect of quantity and quality of prepared diets on production in Paracentrotus lividus (Echinodermata: Echinoidea). In: Scalera-Liaci, L., Canicatti, C. (Eds.), Echinoderm Research. Balkema, Rotterdam, pp. 107–110.

Lawrence, J.M., Lane, J.M., 1982. The utilization of nutrients by postmetamorphic echinoderms. In: Jangoux, M., Lawrence, J.M. (Eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam, pp. 283–316.

Lawrence, J.M., Lawrence, A.L., Mcbride, S.C., George, S.B., Watts, S.A., Plank, L.R., 2001. Developments in the use of prepared feeds in sea urchin aquaculture. World Aquacult. 34–39.

Lawrence, J.M., Olave, S., Otaiza, R., Lawrence, A.L., Bustos, E., 1997. Enchancement of gonad production in the sea urchin Loxechinus albus in Chile fed extruded feeds. J. World Aquac. Soc. 28, 91–96.

Lawrence, J.M., Regis, M., Delmas, P., Gras, C., Klinger, T., 1989. The effect of quality of food on feeding and digestion in Paracentrotus lividus (Lamarck) (Echinodermata: Echinoidea). Mar. Behav. Physiol. 15, 137–144.

Leahy, P.S., Hough-Evans, B.R., Britten, R.J., Davidson, E.H., 1981. Synchrony of oogenesis in laboratory-maintained and wild populations of the purple sea urchin (Strongylocentrotus purpuratus). J. Exp. Zool. 215, 7–22.

Leahy, P.S., Tutschulte, T.C., Britten, R.J., Davidson, E.H., 1978. A large-scale laboratory maintenance system for gravid purple sea urchins (Strongylocentrotus purpuratus). J. Exp. Zool. 204, 369–380.

Le Gall, P., 1990. Culture of echinoderms. In: Barnabé, G. (Ed.), Aquaculture, vol. 1. Ellis Horwood, New York, pp. 443–462.

Le Gall, P., Bucaille, D., 1989. Sea urchins production by inland farming. In: DePauw, N., Jaspers, E., Ackefors, H., Wilkins, N. (Eds.), Aquaculture – A Biotechnology in Progress. European Aquaculture Society, Bredene, Belgium, pp. 53–59.

Levin, V.S., Naidenko, V.P., 1987. Artificial diet for laboratory- maintained sea urchin Strongylocentrotus intermedius. Sov. J. Mar. Biol. 13, 344–349.

Levitan, D.R., 1991. Skeletal changes in the test and jaws of the sea urchin Diadema antillarum in response to feed limitation. Mar. Biol. 111, 431–435.

Liyana-Pathirana, C., Shahidi, F., Whittick, A., Hooper, R., 2002. Effect of season and artificial diets on amino acids and nucleic acids in gonads of green sea urchin Stronglycentrotus drobachiensis. Comp. Biochem. Physiol. 133, 389–398.
Masuda, Y., Noguchi, J., 1986. Seibutsu Eigo Handbook. (in Japanese).

McBride, S.C., Lawrence, J.M., Lawrence, A.L., Mulligan, T.J., 1998. The effect of protein concentration in prepared feeds on growth, feeding rate, total organic absorption and gross assimilation efficiency of the sea urchin Stronglocentritus francisanus. J. Shellfish Res. 17, 1563–1570.

McBride, S.C., Larwence, J.M., Lawerance, A.L., Mulligan, T.J., 1999. Ingestion, absorption and gonad production of adult Strongylocentrotus francisanus fed different rations of a prepared die. J. World Aquac. Soc. 30, 364–370.

McBride, S.C., Pinnix, W.D., Lawrence, J.M., Lawrence, A.L., Mulligan, T.J., 1997. The effect of temperature on production of gonads by the sea urchin Strongylocentrotus francisanus fed natural and prepared diets. J. World Aquac. Soc. 28, 357–364.

Miller, F.R., 1977. Fishery and reproductive cycle of the red sea urchin Strongylocentrotus franciscanus in British Columbia. J. Fish. Res. Board. Can. 34, 604– 610.

Moore, H.B., McPherson, B.F., 1965. A contribution to the study of the productivity of the urchins Tripneustes esculentus and Lytechinus variegatus. Bull. Mar. Sci. 15, 855–871.

Motnikar, S., Marsan, R., Tetreault, F., 1998. Condition green urchins in tanks: water quality tolerance limits. Bull. Aquac. Assoc. Canada 98, 96–98.

Nagai, Y., Kaneko, K., 1975. Culture experiments on the sea urchin Strongylocentrotus pulcherrimus fed an artificial diet. Mar. Biol. 29, 105–108.

Naidenko, T.Kh., Dzyuba, S.M., 1983. Growth and maturation of the sea urchin Strongylocentrotus intermedius in laboratory conditions. Sov. J. Mar. Biol. 8, 197–202.

Olave, S., Bustos, E., Lawrence, J.M., Cárcamo, P., 2001. The effect of size and diet on gonad production by the Chilean sea urchin Loxechinus albus. J. World Aquac. Soc. 33, 210–214.

Pantazis, P.A., Kelly, M.S., Connolly, J.G., Black, K.D., 2000. Effect of artificial diets on growth, lipid utilization, and gonad biochemistry in the adult sea urchin Psammechinus miliaris. J. Shellfish Res. 19, 995–1001.

Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2002a. Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J. World Aquac. Soc. 33, 268–277.

Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2002b. Effect of binder type and concentration on prepared feed stability and gonad yield and quality of the green sea urchin, Stronglycentrotus droechiensis. Aquaculture 205, 301–323.
Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2002c. Effect of protein source ratio and protein concentration in prepared diets on gonad yield and quality of the green sea urchin Stronglycentrotus droechiensis. Aquaculture 214, 307–332.

Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2004. Effect of urchin size and diet on gonad yield and quality in the green sea urchin Strongylocentrotus drobachiensis. Aquaculture 233, 337–367.

Pearse, J.S., 1980. Synchronization of gametogensis in the sea urchins Strongylocentrotus purpuratus and S. franciscanus. In: Clark, W.H., Adams, T.S. (Eds.), Advances in invertetabrate reproduction. Elservier, Netherlands, pp. 53–68.

Pearse, J.S., Cameron, R.A., 1991. Echinodermata: Echinoidea. In: Giese, A.C., Pearse, J.S., Pearse, V.B. (Eds.), Reproduction of Marine Invertebrates, Vol. 6. The Boxwood Press, Pacific Grove, California, pp. 514–662.

Pechenik, J.A., 2000. Biology of the Invertebrates, 4th ed. McGraw-Hill Companies, Inc. New York, 578 pp.

Robinson, S.M.C., 2003. The evolving role of aquaculture in the global production of sea urchin. In: Lawrence, J.M., Guzmán, O. (Eds.), Sea Urchins: Fisheries and Ecology. DEStech Publications, Lancaster, USA, pp. 343–357.

Robinson, S.M.C., Castell, J.D., Kennedy, E.J., 2002. Developing suitable colour in the gonads of cultured green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 206, 289–303.

Ruide, D., Halmay, P., 1992. The southern California red sea urchin fishery 1972-1992. The enhancement and management of sea urchins and other kelp bed resources: a Pacific rim perspective. Reprot No. T-CSGCP-028. California Sea Grant College, Scripps Institution of Oceanography, La Jolla, California, USA. (not paginated).

Saito, K., 1992. Japan’s sea urchin enhancement experience. The enhancement and management of sea urchins and other kelp bed resources. Report No. T-CSGCO-028. California Sea Grant College, Scripps Institution of Oceanography, La Jolla, California, USA. (not paginated).

Savolainen, R., Ruohonen, K., Railo, E., 2004. The effect of stocking density on growth, survival and cheliped injuries of stage 2 juvenile signal crayfish Pasifastacus leniusculus Dana. Aquaculture 231, 237–248.

Scheibling, R.E., Hatcher, B.G., 2001. The ecology of Strongylocentrotus droebachiensis. In: Lawrence, J.M. (Ed.), Edible Sea Urchins: Biology and Ecology. Elsevier, Amsterdam, Netherlands, pp. 271–306.

Scheibling, R.E., Mladenov, P.V., 1987. The decline of the sea urchin, Tripneustes ventricosus, fishery of Barbados: a survey of fishermen and consumers. Mar. Fish. Rev. 49, 62–69.
Schlosser, S.C., Lupatsh, I.L., Lawrence, J.M., Lawrence, A.L., Shpigel, M., 2005. Protein and energy digestibility and gonad developmeny of the European sea urchin Paracentrotus lividus (Lamark) fed algal and prepared diets during spring and fall. Aquac. Res. 36, 972–982.

Schram, E., Van der Heul, J.W., Kamstra, A., Verdegem, M.C.J., 2006. Stocking density-dependent growth of Dover sole (Solea solea). Aquaculture 252, 339–347.

Shpigel, M., McBride, S.C., Marciano, S., Ron, S., Ben-Amotz, A., 2005. Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture 245, 101–109.

Siikavuopio, S.I., Christiansen, J.C., Dale, T., 2006. Effects of temperature and season on gonad growth and feed intake in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 255, 389–394.

Siikavuopio, S.I., Dale, T., Mortensen, A., 2007. The effects of stocking density on gonad growth, survival and feed intake of adult green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 262, 78–85.

Siikavuopio, S.I., Jobling, M., 1996. The effects of stocking density on survival and growth of wild-caught Arctic charr Salvelinus alpinus (L). Nord. J. Freshw. Res. 71, 419–423.

Sloan, N.A., 1985. Echinoderm fisheries of the world: a review. In: Keegan, B.F., O’Connor, B.D.S. (Eds.), Echinodermata. A. A. Balkema, Rotterdam, pp. 109–124.
Spirlet, C., Grosjean, P., Jangoux, M., 2001. Cultivation of Paracentrotus lividus (Echinodermata: Echinoidea) on extruded feeds: digestive, efficiency, somatic and gonadal growth. Aquacult. Nutr. 7, 91–99.

Strathmann, R.R., 1975. Larval feeding in echinoderms. Am. Zool. 15, 717–730.

Tegner, M.J., 1989. The feasibility of enhancing red sea urchin, Strongylocentrotus franciscanus, stocks in California: an analysis of the options. Mar. Fish. Rev. 51, 1–22.

Unuma, T., 2002. Gonadal growth and its relationship to aquaculture in sea urchin. In: Yokota, Y., Matranga, V., Smolenicka, Z. (Eds.), The Sea Urchin: From Basic Biology to Aquaculture. A. A. Balkema Publishers, Swets and Zeitlinger, Lisse, Netherlands, pp. 155–127.

Vadas, R.L., Beal, B., Dowling, T., Fegley, J.C., 2000. Experimental field tests of natural algal diets on gonad index and quality in the green sea urchin, Strongylocentrotus droebachiensis: a case for rapid summer production in post-spawned animals. Aquaculture 182, 115–135.

Walker, C.W., 1982. Nutrition of gametes. In: Jangoux, M., Lawrence, J.M. (Eds.), Echinoderm nutrition. A. A. Balkema, Rotterdam, pp. 449–468.

Walker, C.W., Lesser, M.P., 1997. Prepared food coupled with manipulation of photoperiod yield an out-of-season crop for the green sea urchin. Bull. Assoc. Can. 97, 31–34.
Walker, C.W., Lesser, M.P., 1998. Manipulation of food and photoperiod promotes out of season gametogensis in the green sea urchin, Strongylocentrotus droebachiensis: implicatios for aquaculture. Mar. Biol. 132, 663–676.

Walker, C.W., Unuma, T., McGinn, N.A., Harrington, L.M., Lesser, M.P., 2001. Reproduction of sea urchins. In: Lawrence, J.M. (Ed.), Edible Sea Urchin: Biology and Ecology. Elsevier, Amsterdam, Netherlands, pp. 5–26.

Watts, S.A., Boettger, S.A., McClintock, J.B., Lawrence, J.M., 1998. Gonad production in the sea urchin Lytechinus varuegatus (Larmarck) Fed prepared diets. J. Shellfish Res. 17, 1591–1595.

Yokota, Y., 2002. Introduction to the sea urchin biology. In: Yokota, Y., Matranga, V., Smolenicka, Z. (Eds.), The Sea Urchin: From Basic Biology to Aquaculture. A. A. Balkema Publishers, Swets and Zeitlinger, Lisse, Netherlands, pp. 1–10.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔