(3.236.231.61) 您好!臺灣時間:2021/05/15 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:尤柏森
研究生(外文):Pai-Sen Yu
論文名稱:晚第四紀低緯度太平洋之古海洋學及氣候動力研究
論文名稱(外文):Late Quaternary Paleoceanography and Climate Dynamics of the Low-latitude Pacific
指導教授:陳明德陳明德引用關係
指導教授(外文):Min-Te Chen
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:214
中文關鍵詞:低緯度太平洋氧同位素第14階浮游有孔蟲海水表面溫度反聖嬰
外文關鍵詞:Low-latitude PacificMIS 14planktic foraminifersea surface temperatureLa Niña
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文選取南海與東赤道太平洋海域高解析度/高品質深海沉積物岩(MD972142、MD012394與ODP Site 1240),進行重建低緯度赤道太平洋古海洋的研究。本研究以低緯太平洋之古氣候動力觀點出發,探討南海、西太平洋、低緯度太平洋,甚至於全球性的晚第四紀氣候變遷格局。本論文獲得下列研究成果:1)穩定氧同位素第六階以來,東亞夏季與冬季季風表現於南海之海洋與氣候特徵;2)東亞夏季與冬季季風於軌道力週期上的表現以可能的氣候控制營力;3)過去十六萬年以來,東太平洋湧昇流之時空變化;4)穩定氧同位素第十四階在東亞與西太平洋季風盛行區所記錄之異常溫暖且潮溼氣候事件,及本事件與熱帶海洋之與全球氣候變遷的關連性,並尋求可能之解釋。
本研究以分析低緯度表層海洋之海水表面溫度變化為重心,嘗試由浮游有孔蟲化石群聚與水文梯度變化的觀點著手,首次於越南外海湧昇流區建立了過去十三萬五千年以來,MD012394浮游有孔蟲化石群聚與季風驅動之湧昇流記錄。浮游有孔蟲種屬Globorotalia inflata與Neogloboquadrina dutertrei(包括 Neogloboquadrina pachyderma–右旋種)的相對豐度應可分別作為越南外海湧昇流區之東亞夏季、冬季季風水文指標。此外,本研究嘗試比較位於南海東西兩側岩心MD972142與MD012394之有孔蟲群聚記錄並發現,冷水種屬(N. dutertrei與G. inflata)/暖水種屬(Globigerinoides ruber與Globigerinoides sacculifer)相對豐度之比例應可反映南海的區域水文梯度,可指示東亞冬季季風強弱的指標。
MD012394浮游有孔蟲化石群聚與海表溫估測顯示,最近十萬年以來,東亞夏季季風所驅動的湧昇流呈現明顯的歲差週期變化(~21-kyr),並於北緯13度的夏季太陽日照量達最大值時湧昇強度最高。夏季湧昇流指標種G. inflata豐度高值與低海表溫度與於當地夏季太陽日照量最大值呈現同相變化,相當於距今~11, 33, 59, 83千年前時達到最大值。本研究進一步推論夏季太陽日照量與東亞夏季季風強度可能為控制南海西側湧昇流的重要因素。另一方面,於整個時間序列上東西向海洋表層環境梯度的極值與歲差軌道力週期高值兩相吻合。梯度變化量的絕對值於距今22, 45, 71, 94與116千年前時達到最大,此結果顯示東亞夏季與冬季季風強度分別所造成的南海湧昇流強度與東西向水文梯度變化,似乎與歲差軌道力週期存在著某種關連性。此外,我們認為北半球東亞冬季季風之強弱變化可能和南半球澳洲夏季季風增強與否有關,而東亞冬季季風的強弱可能與穿越赤道氣流的強弱有關。
本研究完成的ODP Site 1240浮游有孔蟲群聚分析顯示,晚第四紀東赤道太平洋深受高緯度的祕魯–智利洋流與副極區洋流的影響。相較於上述西太平洋之南海古海洋記錄,歲差軌道力週期並未明顯地反映在東赤道太平洋的海表溫度記錄上。這可能與東赤道太平洋複雜的海洋與氣候特性有關。東赤道太平洋冷舌的時空變化重建顯示,於過去十六萬年以來,冷舌於東赤道太平洋海域遷移可能介於北緯3度至南緯6度。對於此區域之古海洋研究,我們建議除了探討熱帶地區的氣候動力機制外,高緯度的氣候營力亦須加以考量。
氧同位素第十四階時期的西太平洋與南海可能處於一異常溫暖且潮溼的環境。為了能充分認識低緯度太平洋區域對於穩定氧同位素地層第十四階特殊氣候事件之反應,並探討緯度向之東亞季風與西太平洋暖池區關係以及東–西向赤道太平洋區域氣候機制,本論文進行大陸黃土剖面、南北極冰心與赤道海洋岩心的氧同位素第十四階比較,並推論此時東西半球的大氣與海洋非對稱性逐漸增加,東–西低緯度太平洋呈現截然不同的氣候反應:東太平洋湧昇流強度增強,海表溫度大幅度降溫(~2oC);而東亞夏季季風強度增強,使得東亞/西太平洋則保持高溫且多降雨的氣候型態,此現象類似於現今太平洋常見的氣候現象–反聖嬰。

With respect to understandings of late Quaternary paleoclimatic changes and climate dynamics in the tropical oceans, high-resolution / high-quality marine sedimentary cores retrieved from South China Sea (SCS) and eastern equatorial Pacific (EEP) were used to reconstruct paleoceanography of low-latitude Pacific. For archieving detailed and in-deepth information on this issue, our research selected from regional areas SCS/EEP, western Pacific, low-latitude Pacific, and even the global scale. In this thesis, the main objectives include 1) reconstructing SCS oceanographic behaviours affected by the East Asian summer/winter monsoons variations since Marine Isotope Stage (MIS) 6; 2) understanding plausible climate mechanisms that drived orbital time-scales East Asian monsoons variations in the SCS; 3) spatial and temporal patterns of eastern equatorial cold tongue from the last 160 kyrs; and 4) understanding climatic evolution of low-latitude Pacific by comparing marine records with MIS 6-1 and MIS 15-13 time slices, and further investigating possible driving forcings for abnormally warm/humid glacial MIS 14 condition.
Planktic foraminifer assemblages and temperature estimations on core MD012394 revealed that changes in monsoon-driven upwelling over the past 135 kyrs. Our results indicated that the relative abundance patterns of Globorotalia inflata and Neogloboquadrina dutertrei + Neogloboquadrina pachyderma R would regarded as hydrographic proxies for East Asian summer and winter monsoon, respectively. In addition, we established planktic foraminifer hydrographic index and SST estimates for these two records and demonstrated that these are useful for indicating the effects of the strength of the East Asain winter monsoons on the SCS surface ocean hydrography.
The abundances of G. inflata with abruptly high values were appearred to coincide with Northern Hemisphere summer insolation maxima, particularly at ~11, 33, 59, and 83 kya. The results further supported the view that the strengths of both summer insolation and the East Asian summer monsoon have determined the relative abundance of planktic foraminifer fauna and the SSTs of the western SCS for the last 135 kyr. On the other hand, planktic foraminifer fauna and hydrographic gradient records were relatively high near ~22, 45, 71, 94, and 116 kya, when Northern Hemisphere summer insolation levels were low. The fauna assemblages were primarily indicative of East Asian winter monsoon strength, which was driven by a “cross-equator flow” mechanism.
For the EEP region, our Site 1240 record reveals a significantly intensified cold SST condition that may result from enhanced influences from subpolar and/or Eastern Boundary Current (EBC) components into the EEP. However, SST records of ODP Site 1240 revealed no obvious precession cycles in comparison with precession-dominated low-latitudes / SCS-prevailed monsoon regions. This was due to those fairly complicated EEP environments. Thus, our results suggested that high latitude forcings should take into account while investigating climate dynamics of tropical oceans. Furthermore, spatial and temporal SST patterns across the EEP indicated that path of cold tongue possibly oscillated along a meridional variation within 3oN - 6oS over the past 160 kya.
In particular, the apparently warm and wet glacial climate conditions of MIS 15-13 were well exemplified in many western Pacific sediment core and East Asian loess and lake records. In order to best understand the specific climate event, the paleoclimatic records reconstructed from this thesis could be compared comparing with other terrestrial records from Chinese loess, lakes in the East Asia, and further our understanding on the validity of the hypotheses on the tropical ocean origins of global climate changes in the late Quaternary. We observed a hemispheric asymetry pattern of the tropical Pacific climate, that is, warming in the west and cooling in the east at MIS 14. We further speculate that a large-scale climatic shifting that may have involved a migration of the Intertropical Convergence Zone and a change of trade wind patterns in the tropical Pacific, was probably responsible for the contrasting surface ocean hydrographies during MIS 14.

Acknowledgements …......………………………….……...........................................…i
Abstract (in Chinese) …...………………………….……..............................................ii
Abstract ………………………............................................................………………...v
Contents ……………………….......................................…………………….……....viii
Figures and Tables …………..........................................…………………………..…ix

Chapter 1. 晚第四紀低緯度太平洋之古氣候動力研究進展:以氧同位素第14階為例 ……………….……….…….…….………………………………………………......….1

Chapter 2. Late Quaternary Planktic Foraminifer Fauna and Monsoon Upwelling Records from the Western South China Sea, near Vietnam Margin (IMAGES MD012394) …...……………………..…………………………...……….….......……33

Chapter 3. Late Quaternary East Asian Monsoon Variability in the South China Sea: Evidence from Planktic Foraminifer Fauna and Hydrographic Gradient Records ........65

Chapter 4. A Prolonged Warm and Humid Interval during Marine Isotope Stage 13-15 as Revealed by Hydrographic Reconstructions from the South China Sea (IMAGES MD972142) …....…………………………………………………………...….………98

Chapter 5. Faunal-derivd Sea Surface Temperature Reconstructions of Eastern Pacific Oceanic Variability: A Comparison to Temperature Estimates from Uk’37 and, Mg/Ca Ratios in Planktic Foraminifera (ODP Site 1240) …...……………...………………..123

Chapter 6. Enhanced Zonal Asymmetry of the Tropical Pacific Climate during Marine Isotope Stage 15-13: Insights from Faunal-ased Sea Surface Temperature Reconstructions at ODP Site 1240 (Eastern Equatorial Pacific) ………….………….160

Supplementary Information 1. …………….………….……………………….…….193
Supplementary Information 2. …………….………….……………………….…….205


[1] RUTHERFORD S, D’HONDT S. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles [J]. Nature, 2000, 408:72–75.

[2] RAVELO A C, DEKENS P S, MCCARTHY M. Evidence for El Niño-like conditions during the Pliocene [J]. GSA Today, 2006, 16, 4-11, doi: 10.1130/1052-5173.

[3] MEDINA-ELIZALDE M D, LEA D W, FANTLE M S. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction [J]. Earth Planet Sci Lett, 2008, 269:585-595.

[4] KOUTAVAS A, LYNCH-STIEGLITZ J, MARCHITTO JR, J M. et al. El Niño-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297: 226–230.

[5] WEI K Y, LEE T Q, BEAUFORT L, et al. Late Pleistocene volcanic ash layers in Core MD972142, offshore of Northwestern Palawan, South China Sea: A preliminary report [J]. Terrest Atmospheric Oceanic Sci, 1998, 9:143–152.

[6] BASSINOT F, BALTZER A, CHEN M T, et al. Scientific Report of the WEPAMA Cruise, MD122/IMAGES VII [R]. Institut Francais pour la Recherche et la Technologie Polaires:France,2002:1-453.

[7] MIX A C, TIEDEMANN R, BLUM P, et al. Proc Ocean Drill Program Initial Rep, 202 [M]. College Station, TX (Ocean Drilling Program) ,2002:doi:10.2973/odp.proc.ir.202.2003.

[8] THUNELL R C, QINGMIN M, CALVERT, S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2 [J]. Paleoceanography, 1992, 7(2), 143-162, doi:10.1029/92PA00278.

[9] LYLE M, DADEY K A, FARRELL J W. The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the closure of the Panama Gateway [A]. In: Pisias N G, Mayer L A, Janecek T R, et al. ed., Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 1995: 821–838.

[10] IMBRIE J, KIPP N G. A new micropaleontological method for quantitative paleoclimatology: Application to a Late Pleistocene Caribbean core [A]. In: Turekian KK ed., The Late Cenozoic Glacial Ages [M]. United State: Yale Univ Press, 1971: 71–181.

[11] PARKER F L. Planktonic foraminiferal species in Pacific sediments. Micropaleontol., 1962, 8:219–254.

[12] BÈ A W H. Foraminifera, families: Globigerinidae and Globorotaliidae [A]. In: Fraser J H ed., Fiches d’Indentification du Zooplancton [M]. Cons. Int. Explor. Mer, Charlottenlund, 1967: Sheet 108.

[13] KIPP N G, Brown University. New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic [J]. Geol Soc Amer Memoir, 1976, 145: 3-41.

[14] CHEN M T, HUANG C C, PFLAUMANN U, et al. Estimating glacial western Pacific sea-surface temperature: Methodological overview and data compilation of surface sediment planktic foraminifer faunas [J]. Quat Sci Rev, 2005, 24(7-9), doi:10.1016/j.quascirev.2004.07.013.

[15] KUCERA M, WEINELT M, KIEFER T, et al. Reconstruction of the glacial Atlantic and Pacific sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration datasets [J]. Quat Sci Rev, 2005, 24(7-9), doi:/10.1016/j.quascirev.2004.07.014.

[16] MARGO PROJECT MEMBERS. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum [J]. Nature Geosci, 2009, 2: 127-132.

[17] HUTSON W H. The Agulhas Current during the Late Pleistocene: Analysis of modern faunal analogs [J]. Science, 1980, 207: 64-66.

[18] PFLAUMANN U, DUPRAT J, PUJOL C, et al. SIMMAX, a transfer technique to deduce Atlantic sea surface temperatures from planktonic foraminifera—the EPOCH approach [J]. Paleoceanography, 1996, 11: 15-35.

[19] MIX A C, MOREY A E, PISIAS N G, et al. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice-age tropics [J]. Paleoceanography, 1999, 14(3): 350– 359.

[20] NÜRNBERG D, BIJMA J, HEMLEBEN C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures [J]. Geochim Cosmochim Acta, 1996, 60(5): 803–814.

[21] HASTINGS D W, RUSSELL A D, EMERSON S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy [J]. Paleoceanography, 1998, 13: 161-169.

[22] ANAND P, ELDERFIELD H, CONTE M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series [J]. Paleoceaanography, 2002, 18(2), 1050, doi:10.1029/2002PA000846.

[23] DEKENS P S, LEA D W, PAK D K, et al. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleo-temperature estimation [J]. Geochem Geophys Geosyst, 2002, 3, 1022, 10.1029/2001GC000200.

[24] PRAHL F G, WAKEHAM S C. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment [J]. Nature, 1987, 330: 367-369.


[25] PRAHL F G, MUEHLHAUSEN L A, ZAHNLE D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochim et Cosmoch Acta, 1988, 52: 2303-2310.

[26] CONTE M H, EGLINTON G. Alkenone and alkenoate distributions within the euphotic zone of the eastern north Atlantic: Correlations with production temperature [J]. Deep-Sea Res, 1993, 4(10): 1935-1961.

[27] SIKES E L, VOLKMAN J K. Calibration of alkenone unsaturation ratios (UK37) for paleotemperature estimation in cold polar water [J]. Geochim et Cosmoch Acta, 1993, 57: 1883-1889.

[28] MARLOWE I T, BRASSELL S C, EGLINTON G, et al, Long chain unsaturated ketones and esters in living algae and marine sediments [J]. Organic Geochemistry, 1984, 6: 135-141.

[29] SIKES E L, FARRINGTON J W, KEIGWIN L D. Use of the alkenone unsaturation ratio UK37 to determine past sea surface temperature: Coretop SST calibrations and methodology considerations [J]. Earth Planet Sci Let, 1991, 104: 36-47.

[30] BEMIS B E, SPERO H J, BIJMA J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations [J]. Paleoceanography, 1998, 13: 150–160.

[31] YU P S, MII H S, MURAYAMA M, et al. Late Quaternary planktic foraminifer fauna and monsoon upwelling records from the western South China Sea, near Vietnam margin (IMAGES MD012394) [J]. Terrest Atmospheric Oceanic Sci, 2008, 19(4): 347-362.

[32] CHEN M T, BEAUFORT L, THE SHIPBOARD SCIENTIFIC PARTY OF THE IMAGES III/MD106-IPHIS CRUISE (LEG II). Exploring Quaternary variability of the East Asian monsoon, Kuroshio Current, and the Western Pacific warm pool systems: High-resolution investigations of paleoceanography from the IMAGES III/MD106-IPHIS cruise [J]. Terrest Atmospheric Oceanic Sci, 1998, 9: 129–142.

[33] YU P S, HUANG C C, CHIN Y, et al. Late Quaternary East Asian monsoon variability in the South China Sea: Evidence from planktic foraminifer fauna and hydrographic gradient records [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 236(1-2): 74-90.

[34] CHEN M T, HUANG C Y. Ice-volume forcing of winter monsoon climate in the South China Sea [J]. Paleoceanography, 1998, 13: 622-633.

[35] WANG L, SARNTHEIN M, ERLENKEUSER H, et al. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea [J]. Mar Geol, 1999, 156: 245–284.

[36] JIAN Z, HUANG B, KUHNT W, et al. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea [J]. Quat Res, 2001, 55(3): 363-370.

[37] CHEN M T, SHIAU L J, YU P S, et al. 500,000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island) [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 197: 113-131.

[38] HUANG C C, CHEN M T, LEE M Y, et al. Planktic foraminifer faunal sea surface temperature records of the past two glacial Terminations in the South China Sea near Wan-An shallow (Images Core MD972151) [J]. Western Pacific Earth Sci, 2002, 2(1): 1-14.

[39] ZHAO M, HUANG C Y, WANG C C, et al. A millennial-scale UK37 sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 236(1-2): 39-55.

[40] SHIAU L J, YU P S, WEI K Y, et al. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern South China Sea over the past 800000 years [J]. Terrest Atmospheric Oceanic Sci, 2008, 19(4): 363-376.

[41] MOHTADI M, HEBBELN D, MARCHANT M. Upwelling and productivity along the Peru-Chile Current derived from faunal and isotopic compositions of planktic foraminifera in surface sediments [J]. Mar Geol, 2005, 216: 107-126.

[42] YU P S, KIENAST M, CHEN M T, et al. Changes in spatial and temporal faunal-based sea surface temperature of eastern Pacific Oceanic variability since the last 160 kya. (In preparation)

[43] LEA D W, PAK D K, SPERO H J, Climate impact of late Quaternary equatorial Pacific sea surface temperature variations [J]. Science, 2000, 289: 1719–1724.

[44] DUBOIS N, KIENAST M, NORMANDEAU C, et al. Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry [J]. Paleoceanography, 2009, 24, PA4207, doi:10.1029/2009PA001781.

[45] ANDREASEN D J, RAVELO A C. Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum [J]. Paleoceanography, 1997, 12: 395-413.

[46] PISIAS N G, MIX A C. Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: Evidence from radiolarian microfossils [J]. Paleoceanography, 1997, 12(3): 381– 393.

[47] FELDBERG M J, MIX A C, Sea-surface temperature estimates in the Southeast Pacific based on planktonic foraminiferal species: Modern calibration and Last Glacial Maximum [J]. Mar Micropaleontol, 2002, 44: 1-29.

[48] FELDBERG M J, MIX A C. Planktonic foraminifera, sea surface temperatures, and mechanisms of oceanic change in the Peru and south equatorial currents, 0– 150 ka BP [J]. Paleoceanography, 2003, 18(1), 1016, doi:10.1029/ 2001PA000740.

[49] HOSTETLER S, PISIAS N, MIX A. Sensitivity of Last Glacial Maximum climate to uncertainties in tropical and subtropical ocean temperatures [J]. Quat Sci Rev, 2006, 25: 1168–1185.

[50] LEA D W, MARTIN P A, PAK D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core [J]. Quat Sci Rev, 2002, 21: 283–293.

[51] KIENAST M, KIENAST S S, CALVERT S E, et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation [J]. Nature, 2006, 443(7113): 846-849.

[52] PENA L D, CACHO I, FERRETTI P, et al. ENSO-like variability during glacial terminations and interlatitudinal tele-connections [J]. Paleoceanography, 2008, 23, PA3101, doi:10.1029/2008PA001620.

[53] HESLOP D, DEKKERS M J, LANGEREIS C G. Timing and structure of the mid-Pleistocene transition: Records from the loess deposits of northern China [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 185: 133-143.

[54] SUN Y, CLEMENS S C, AN Z, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau [J]. Quat Sci Rev, 2005, doi:/10.1016/j.quascirev.2005.07.005.

[55] SUN Y, CHEN J, CLEMENS S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau [J]. Geochem Geophys Geosyst, 2006, 7, Q12Q02, doi:10.1029/2006GC001287.

[56] WEI K Y, CHIU T C, CHEN Y G. Toward establishing a maritime proxy record of the East Asian summer monsoons for the late Quaternary [J]. Mar Geol, 2003, 201: 67–79.

[57] LIU Z, HERBERT T D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch [J]. Nature, 2004, 427: 720–723.

[58] DE GARIDEL-THORON T, ROSENTHAL Y, BASSINOT F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, 2005, 433: 294–298.

[59] MEDINA-ELIZALDE M, LEA D W. The mid-Pleistocene transition in the tropical Pacific [J]. Science, 2005, 310: 1009-1012.

[60] YU P S, KIENAST M, CHEN M T, et al. Enhanced zonal asymmetry of the tropical Pacific climate during marine isotope stage 15-13: Insights from multiple sea surface temperature reconstructions at ODP Site 1240 (eastern equatorial Pacific). (In preparation)

[61] YU P S, CHEN M T. A prolonged warm and humid interval during Marine Isotope Stage 13-15 as revealed by hydrographic reconstructions from the South China Sea (IMAGES MD972142) [J]. Journal of Asian Earth Sciences. (Accepted)

[62] LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20, PA1003, doi:10.1029/2004PA001071.

[63] EPICA COMMUNITY MEMBERS. Eight glacial cycles from an Antarctic ice core [J]. Nature, 2004, 429: 623-628.

[64] LOULERGUE L, SCHILT A, SPAHNI R, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years [J]. Nature, 2008, 453: 383-386.

[65] WILLIAMS D F, PECK J, KARABANOV E B, et al. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years [J]. Sciecne, 1997, 278: 1114-1117.

[66] PROKOPENKO A A, HINNOV L A, WILLIAMS D F, et al. Orbital forcing of continental climate during the Pleistocene: A complete astronomically tuned climatic record from Lake Baikal, SE Siberia [J]. Quat Sci Rev, 2006, 25: 3431-3457.

[67] CLEMENS S C, PRELL W L, SUN Y, et al. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons [J]. Paleoceanography, 2008, 23, PA4210, doi:10.1029/2008PA001638.

[68] ROSSIGNOL-STRICK M, PATERNE M, BASSINOT F C, et al. An unusual mid-Pleistocene monsoon period over Africa and Asia [J]. Nature, 1998, 392: 269–272.

[69] ALTABET M A, MURRAY D W, PRELL W L. Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: Implications for the marine N cycle [J]. Paleoceanography, 1999, 14(6): 732-743.

[70] RAVELO A C, ANDREASEN D H. Using planktonic foraminifera as monitors of the tropical surface ocean [A]. In: Abrantes F and Mix A ed., Reconstructing Ocean History - A Window into the Future [M]. New York: Plenum Press, 1999: 217-244.

[71] GERSONDE R, ABELMANN A, CORTESE G, et al. The late Pleistocene South Atlantic and Southern Ocean surface – A summary of time-slice and time-series studies [A]. In: Wefer G, Mulitza S, Ratmeyer V ed., The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems [M]. Berlin: Springer-Verlag, 2003: 499-529.

[72] CRUNDWELL M, SCOTT G, NAISH T, et al. Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123 [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 260: 202-229.

[73] HAYWARD B W, SCOTT G H, CRUNDWELL M P, et al. The effect of submerged plateaux on Pleistocene gyral circulation and sea-surface temperatures in the Southwest Pacific [J]. Global Planet Change, 2008, 63(4): 309-316.

[74] BECQUEY S, GERSONDE R. Past hydrographic and climatic changes in the Subantarctic Zone of the South Atlantic: The Pleistocene record from ODP Site 1090 [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 182: 221–239.

[75] SCHEFUß E, SINNINGHE DAMSTE J S S, JANSEN J H F. Forcing of tropical Atlantic sea surface temperatures during the mid-Pleistocene transition [J]. Paleoceanography, 2004, 19, PA4029. doi:10.1029/2003PA000892.

[76] PILLANS B, BOURMAN R. Mid Pleistocene arid shift in southern Australia, dated by magnetostratigraphy [J]. Aust J Soil Res, 2001, 39: 89-98.

[77] HOOGHIEMSTRA H, MELICE J L, BERGER A, et al. Frequency spectra and paleoclimatic variability of the high-resolution 30-1450 ka Funza I pollen records (Eastern Cordillera, Colombia) [J]. Quat Sci Rev, 1993, 12: 141-156.

[78] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long term numerical solution for the insolation quantities of the Earth [J]. Astron Astrophys, 2004, 428: 261-285.

[79] LÜTHI D, LEFLOCH M, BEREITER B, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present [J]. Nature, 2008, 453: 379-382.

[80] PETIT J, JOUZEL J, RAYNAUD D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399: 429–436.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top