跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育如
研究生(外文):Yu-Ju Lin
論文名稱:304L不銹鋼軋延組織之氫脆特性研究
論文名稱(外文):Hydrogen embrittlement susceptibility of rolled 304L stainless steel in H2S solution
指導教授:蔡履文
指導教授(外文):Leu-Wen Tsay
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:304L不銹鋼氫脆滾軋
外文關鍵詞:304L stain steelhydrogen embrittlementrolling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討304L不銹鋼板材在常溫滾軋、150℃加熱滾軋及滾軋試件經敏化處理(650℃/1h)後,在飽和硫化氫(H2S)溶液中之缺口拉伸性質研究。
缺口拉伸試驗結果顯示,由於氫補集區的增加,減緩氫擴散至缺口尖端塑性區,使常溫滾軋後的試片相較於其它試片具有較高缺口強度、較低的缺口強度損失率。敏化後試片中的麻田散鐵、差排密度以及滾軋所致之缺陷大量減少,而導致氫補集位置數量減少,使氫脆敏感性增加。另外,晶界附近的應變誘發麻田散鐵相變態提供了氫快速擴散的路徑,致使缺口強度損失率升高。

The effects of rolling and sensitization treatment on the hydrogen embrittlement susceptibility (HES) of 304L stainless steel (SS) were investigated. Hydrogen embrittlement susceptibility of the specimen was associated with the loss of notched tensile strength (NTS) in H2S solution. The results indicated the increase in beneficial trapping sites for hydrogen in cold-rolled 304L SS accounted for the high NTS and low HES as compared with other specimens. The lowered trapping sites for hydrogen along with the grain boundary martensite, which provided fast diffusion path for hydrogen in the specimen, resulted in increasing the HES of the sensitized specimen.
第一章 前言…………………………………………………….………1
第二章 文獻回顧……………………………………………………….2
2-1 不銹鋼簡介………………………………………………………2
2-2 主要元素對沃斯田鐵系不銹鋼之影響…………………………4
2-3 沃斯田鐵系不銹鋼之熱敏化……………………………………5
2-4 沿晶腐蝕理論……………………………………………………6
2-5 麻田散鐵相變態…………………………………………………8
2-6 麻田散鐵晶體結構………………………………………………8
2-7 麻田散鐵剪切變形………………………………………………8
2-8 麻田散鐵變態溫度………………………………………………9
2-9 應變誘發麻田散鐵相變化………………………………………9
2-10 304L不銹鋼之性質……………………………………………10
2-11 氫脆簡介………………………………………………………10
2-11-1 氫脆理論與機構…………………………………………….11
2-11-2 氫脆對材料機械性質之影響…….…………………………13
第三章 實驗設備與方法…………………………………..…………25
3-1 實驗材料………………………………………………………..25
3-2 輥軋及敏化程序…………………………………………..……25
3-3 顯微組織觀察…………………………………………..………25
3-4 X-Ray繞射及肥粒鐵量測……………………………………...26
3-5 機械性質測試…………………………………………………..26
3-5-1 微硬度量測…………………………………………………..26
3-5-2 平板拉伸試驗……………………………………….……….26
3-5-3 缺口拉伸試驗……………………………………………....26
3-6 彎曲試片氫脆試驗……………………………………………..27
第四章 結果與討論………………………………………………...34
4-1 顯微組織觀察…………………………………………………..34
4-2肥粒鐵量測及X-Ray繞射……………………………………...34
4-3 微硬度量測……………………………………………………..36
4-4 平板拉伸試驗…………………………………………………..36
4-5 缺口拉伸試驗…………………………………………………..37
4-6 缺口拉伸破斷觀察……………………………………………..39
4-7 彎曲試片浸泡實驗……………………………………………..41
第五章 結論………………………………………………………...69
第六章 Reference…………………………………………………...70

1. 機械工程手冊2─鋼材料,五南圖書出版股份有限公司,2002年,pp.246-256。
2. R.W. Cahn, P.Haasen, E.J. Kramer, Materials Science and Technology A, Comprehensive Treatment, Vol. 7, 1991, pp.615.
3. 陳泰吉,“冷軋301不銹鋼在氫氣中之缺口拉伸強度及疲勞裂縫成長特性研究”,國立台灣大學工學院材料科學與工程學系暨研究所碩士論文,民國九十八年六月,pp.5、pp.37-106。
4. W.Lin, J.C. Lipplod and W.Baeslck III, “Welding research suppenment”, 1993, pp.135-153.
5. 開物、蔡履文、賴建霖,”304L不銹鋼鹽霧應力腐蝕裂化與防治”國立台灣大學工學院材料科學與工程學系,民國九十九年三月。
6. S.K. Mannan, R.K. Dayal, M. Vijayalakshmi and N. Parvathvarthini, J. Nucl. Mater., 126 (1984) pp.1-8.
7. N. Parvathvarthini, R. K. Dayal, S. K. Seshadari and J. B. Gnanamoorthy, J. Nucl. Mater., 168 (1989) pp.83-96.
8. N. Parvathvarthini, R. K. Dayal and J. B. Gnanamoorthy, J. Nucl. Mater., 208 (1994) pp.251-258.
9. R.K. Dayal, N. Parvathvarthini and J.B. Gnanamoorthy, in Symp. on “Localised corrosion and environmental cracking” (SOLCEC), January (1997) Kalpakkam C.5. pp.1-7.
10. S. Pednekar and S. Smialowska, Corros., 36 (1980) pp.565-577.
11. T. Akiyama, T. Terasaki and H. Komeda, J. Jpn Inst. Metals, 52 (1988) pp.1137-1143.
12. G. Rondelli, B. Mazza, T. Pastore and B. Vicentint, Mater. Sci. Forum, 8 (1986) pp.593-603.
13. R. Pascali, A. Benvenuti and D. Wenger, Corros., 40 (1984) pp.21-32.
14. R. Beltran, J.G. Maldonado, L.E. Murr and W.W. Fisher, Acta Metall., 45 (1997) pp.4351-4360.
15. R.Beltran, E. A. Trillo, R.J. Romero, L.E. Murr, A.H. Advani and W.W. Fisher, Scripta Metall. Mater., 30 (1994) pp.1021-1026.
16. N. Parvathvarthini and R.K. Daya, J. Nucl. Mater., 305 (2002) pp.209-219.
17. 屈興勝,”奧氏體不銹鋼晶間腐蝕”,遼寧工學院學報,Feb. 2007,Vol.27,No.1。
18. F.G. Wilson, “Mechanism of intergranular corrosion of austeniticstainless steels-literature review”, British Corrosion Journal, Vol.6, 1971, pp.100.
19. V. Cihal, “Intergranular corrosion of steels and alloys”, Elsevier, New York, 1983, pp.79.
20. E.C. Brain, R.H. Abron and T.J.M. Rutherford, Trans. Am. Soc. Steel Treat., Vol.21, 1933, pp,481.
21. K. Oszawa and H.J. Engell, “The anodic polarization curves of Iron-Nickel-Chromium alloys”, Corrosion Science, Vol.6, 1966, pp.389.
22. P. Chung and Z. Szklarska-Smialowski, Corrosion, Vol.37, 1981, pp.39.
23. A.B. Kinzell, J. Metals, N.Y., Vol.4, 1952, pp.469.
24. A.B. Kinzell, Trans. Met. Soc. AIME, Vol.194, 1952, pp.469.
25. R.F. Hanneman, and K.T. Anst, Scr. Inotall., Vol.2, 1968, pp.235.
26. J.S. Armijo, “Impurity adsorption and intergranular corrosion of austenitic stainless steel in boiling HNO3-K2Cr2O7 solutions, Corrosion Science, Vol.7, 1967, pp.143.
27. J.S. Armijo, “Intergranular corrosion of nonsensitizized austenitic stainless steels”, Corrosion Science, Vol.24, 1968, pp.24.
28. K. Mills et al. (editors), Metals Handbook 9th, Vol.9, American Society for Metals, Metals Park, Ohio, 1985, pp.668.
29. G. Krauss, STEELS: Heat Treatment and Processing Principles, 1990, pp.351 and pp.43.
30. W.K. Honeycombe & H.K.D.H. Bhadeshia STEELS, Microstructure and Properties 2nd edition, 1995, pp.38.
31. M. Cohen, The Strengthening of Steel, Trans TSM-AIME, Vol.224, 1962, pp.638.
32. J.W. Christian, in Martensite Fundamentals and Technology, E.R. Petty(Ed.), Longman, London, 1970, pp.13.
33. G. Krauss, Principles of Heat Treatment of Steels, American Society for Metals, 1980, pp.43.
34. G.R. Speich, Met. Trans., Vol.3, 1972, pp.1045.
35. Young Won Chang, Tae Kwon Ha and Hong Chul Shin, Vol.45, 2001, pp.823-829.
36. T. Angel, “J. Iron Steel Inst.”, Vol.177, 1954, pp.165-174.
37. P.C. Maxwell, A. Goldberg and J.C. Shyne, Metall. Trans., 5B, 1974, pp.1319-1324.
38. P.C. Maxwell, A. Goldberg and J.C. Shyne, Metall. Trans., 5B, 1974, pp.1305-1318.
39. D. Hennessy, G. Steckel and C. Altstetter, Metall. Trans. 7A, 1976, pp.415-424.
40. F. Lecroisey and A. Pineau, Metall. Trans., 2B, 1972, pp.391-400.
41. H. Fujita and S. Ueda, Acta Metall., 20, 1972, pp.759-767.
42. Hashimoto, M. and R.M. Latanision, THE ROLE OF DISLOCATIONS DURING TRANSPORT OF HYDROGEN IN HYDROGEN EMBRITTLEMENT OF IRON. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1988. 19(11):pp.2799-1803.
43. Zapffe, C.A. and C.E. Sims, Hydrogen embrittlement, internal stress and defects in steel. Transactions of the American Institute of Mining and Metallurgical Engineers, 1941. 145:pp.225-261.
44. Johnson, H.H., J.G. Morlet, and A.R. Troiano, HYDROGEN, CRACK INITIATION, AND DELAYED FAILURE IN STEEL. Transactions of the American Institute of Mining and Metallurgical Engineers, 1985. 212:pp.528-536.
45. Petch, N.J. and P. Stables, DELAYED FRACTURE OF METALS UNDER STATIC LOAD. Nature, 1952. 169(4307):pp.842-843.
46. Beachem, C.D., NEW MODEL FOR HUDROGEN-ASSISTED CRACKING (HYDROGEN EMBRITTLEMENT). Metallurgical Transactions, 1972 3(2):pp.437-&.
47. Tien, J.K., et al., HYDROGEN TRANSPORT BY DISLACATIONS. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976. 7(6):pp.821-829.
48. Hashimoto, M. and R.M. Latanision, EXPERIMENTAL-STUDY OF HYDROGEN TRANSPORT DURING PLASTIC-DEFORMATION IN IRON. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1988. 19(11):pp.2789-2798.
49. G.M. Pressouyre, and I.M. Bernstein, QUANTITATIVE-ANALYSIS OF HYDROGEN TRAPPING. Metallurgical Transactions α-Physical Metallurgy and Materials Science, 1978. 9(11):pp.1571-1580.
50. G.M. Pressouyre, CLASSIFICATION OF HYDROGEN TRAPS IN STEEL. Metallurgical Transactions α-Physical Metallurgy and Materials Science, 1979. 10(10):pp.1571-1573.
51. G.M. Pressouyre, and I.M. Bernstein, KINETIC TRAPPING MODEL FOR HYDROGEN-INDUCED CRAKING. Acta Metallurgica, 1979. 27(1):pp.89-100.
52. G.M. Pressouyre, J.P. Fidelle, and R.A. Laurent, Hydrogen Effect in Metal, edit by Bernstein and A.W. Thompson, 1980, pp,27.
53. V.R. Sawicki, PHD Dissertation, Cornell University, 1971.
54. R.P. Gangloff, PHD Dissertation, Lehigh University,1974.
55. Williams, D.P. and H.G. Nelson, EMBRITTLENENT OF 4130-STEEL BY LOW-PRESSURE GASEOUS HYDROGEN. Metallurgical Transactions, 1970. 1(1):pp.63-&.
56. Tien, J.K., et al,. HYDROGEN TRANSPORT BY DISLOCATIONS. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976. 7(6):pp.821-829.
57. A.W. Thompson, I.M. Bernstein, Adv. Corros. Sci. Tech., Vol.7, 1980, pp.53-175.
58. C.L. Lai, L.W. Tsay, W. Kai, C. Chen, “Notched tensile tests of cold-rolled 304L stainless steel in 40 wt.% 80℃ MgCl2 solution”, Corrosion Science, Vol.51, 2009, pp.380-386.
59. Olson, G.B. and M. Cohen, MECHANISM FOR STRAIN-INDUCED NUCLEATION OF MARTENSITIC TRANSFORMATIONS. Journal of the Less-Common Metals, 1972. 28(1):pp.107-118.
60. 賴建霖、開物、蔡履文、陳鈞,“冷加工與敏化對304L不銹鋼應力腐蝕性質”,防蝕工程,第二十四卷第一期,2010年3月,pp.61-70。
61. C. Zener, in Fracturing of Metals, ASM, Metals Park, Ohio, 1948, pp.3.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top