(3.235.245.219) 您好!臺灣時間:2021/05/07 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡振鈞
研究生(外文):Jhen-Jyun Tsai
論文名稱:最佳化基本解法與Trefftz法於含圓與球形邊界拉普拉斯問題之探討
論文名稱(外文):Study on the Laplace problems containing circular or spherical boundaries by using the optimal method of fundamental solutions and the Trefftz method
指導教授:陳正宗陳正宗引用關係
指導教授(外文):Jeng-Tzong Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:74
中文關鍵詞:基本解法間接邊界積分方程法邊界值問題拉普拉斯方程Trefftz法
外文關鍵詞:method of fundamental solutions (MFS)indirect boundary integral equation method (BIEM)boundary value problem (BVP)Laplace problemTrefftz method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文主要以基本解法配合Trefftz方法與間接邊界積分方程法求解含圓形及球形邊界拉普拉斯方程之邊界值問題。在基本解法中,我們專注在最佳佈點位置的探討,以及基本解法中解的表示式所含自由常數項扮演的角色這兩個議題。在二維偏心圓例子中,利用映像法的觀點找出佈點的最佳位置。然而,在三維偏心球的例子中,兩焦點仍是佈點的重要位置。除此之外,Trefftz基底與基本解法集中源的關係在本文中也一併討論。我們發現基本解法中的集中源可以利用分離核展開型式找到對應的全部內外域Trefftz基底。反之,利用基本解法中的集中源可以疊加出單一Trefftz基底的解。基於這些發現,可以藉由間接邊界積分方程法與基本解法來建立兩種方法虛擬強度間的關係。關於橢圓領域的格林函數問題可以利用間接邊界積分方程法推導出解析解,此解析解比Lebedev的解更為通用,並與傳統邊界元素法的結果做比較,得到吻合的結果。

Abstract
In this thesis, we solve the boundary value problems (BVPs) without sources for the 2D and 3D Laplace problems containing circular and spherical boundaries by using the method of fundamental solutions (MFS) in conjunction with the Trefftz method and the indirect boundary integral equation method (BIEM). In the MFS, we focus on the two main issues. Not only optimal location of the source distribution in the MFS but also the two versions of the MFS by adding a free constant term are discussed. In the eccentric annulus, the optimal location of the source distribution in the MFS can be found by using the image concept. Nevertheless, the location of the source at two foci for the problem of eccentric sphere plays an important role. Besides, the relationship between the Trefftz base and the singularity in the MFS is constructed by using the indirect BIEM and degenerate kernel. It is found that one source of the MFS contains all interior and exterior Trefftz sets through a degenerate kernel. On the contrary, one single Trefftz base can be superimposed by putting some sources in the MFS. Based on this finding, the relationship between the fictitious boundary densities of the indirect BIEM and the singularity strength in the MFS can be constructed due to the fact that the MFS is a lumped version of an indirect BIEM. Regarding the Green’s function of elliptic domain, the analytical solution is derived by using the indirect BIEM and is compared with the numerical solution of the BEM. It is found that our solution is more general than Lebedev’s case. Agreement is made after comparing with the BEM solutions.

Contents
Contents…………………………………………………………I
Table captions………………………………………………III
Figure captions………………………………………………IV
Notations………………………………………………………VIII
摘要…………………………………………………………………X
Abstract…………………………………………………………XI

Chapter 1 Introduction………………………………………1
1.1 Motivation of the research and literature review………………………………………………………………1
1.2 Organization of the thesis…………………………3
Chapter 2 Solutions of two-dimensional Laplace problems containing circular or elliptic boundaries using the Trefftz method, the MFS and the indirect BIEM……………………………………………………………………7
Summary………………………………………………………………7
2.1 Introduction…………………………………………………7
2.2 Problem statements…………………………………………9
2.3 The method of fundamental solutions (MFS)……
………………………………………………………………………………9
2.4 Trefftz method…………………………………………10
2.5 Indirect boundary integral equation method (Indirect BIEM)………………………………………………………………11
2.6 Relationship between the Trefftz bases and the singularity in the MFS………………………………………12
2.7 Illustrative examples and discussions…………12
2.8 Conclusions…………………………………………………19
Chapter 3 Solutions of three-dimensional Laplace problems containing spherical boundaries using the Trefftz method, the MFS and the indirect BIEM………………………………………………………………………39
Summary………………………………………………………………39
3.1 Introduction……………………………………………………39
3.2 Problem statements……………………………………………41
3.3 The method of fundamental solutions (MFS)………………………………………………………………………………41
3.4 Indirect boundary integral equation method (Indirect BIEM)………………………………………………………………42
3.5 Relationship between the Trefftz bases and the singularity in the MFS………………………………………43
3.6 Illustrative examples and discussions………44
3.7 Conclusions…………………………………………………47
Chapter 4 Conclusions and further research…………67
4.1 Conclusions……………………………………………………67
4.2 Further research……………………………………………68
References……………………………………………………………70


References
[1] Alves C.J.S., On the choice of source points in the method of fundamental solutions, Engineering Analysis with Boundary Elements, 33 (2009) 1348-1361.
[2] Antunes P.R.S., The Method of Fundamental Solutions applied to the eigenproblems in partial differential equations, Ph.D. Dissertation, Institute of Superior Technology, Portugal.
[3] Atluri S.N., Zhu T., A mew meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22 (1998) 117-127.
[4] Atluri S.N., Kim H.G., Gho J.Y., A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods, Computational Mechanics, 24 (1999) 348-372.
[5] Belystcho T., Lu Y., Gu L., Element free Galerkin method, International Journal for Numerical Methods in Engineering, 37 (1994) 229-256.
[6] Bogomolny A., Fundamental solutions method for elliptic boundary value problems, SIAM Journal on Numerical Analysis, 22 (1985) 644-669.
[7] Chen C.S., Rashed Y.F., Golberg M.A., A mesh-free method for linear diffusion equations, Numerical Heat Transfer, 33 (1998) 469-486.
[8] Chen C.S., Karageorghis A., Smyrlis Y.S., The Method of Fundamental Solutions – A Meshless Method, Dynamic Publishers, Inc., Atlanta, 2008.
[9] Chen J.T., Wu C.S., Alternative derivations for the Poisson integral formula, International Journal Mathematical Education in Science and Technology, 37 (2006) 165-185.
[10] Chen J.T., Wu C.S., Lee Y.T., Chen K.H., On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations, Computers and Mathematics with Applications, 53 (2007) 851-879.
[11] Chen J.T., Lee Y.T., Yu S.R., Shieh S.C., Equivalence between the Trefftz method and the method of fundamental solution for the annular Green’s function using the addition theorem and image concept, Engineering Analysis with Boundary Elements, 33 (2009) 678-688.
[12] Chen J.T., Tsai M.H., Liu C.S., Conformal mapping and bipolar coordinates for eccentric Laplace problems, Computer Applications in Engineering Education, 17 (2009) 314-322.
[13] Chen J.T., Shieh H.C., Tsai J.J., Lee J.W., Equivalence between Trefftz method and method of fundamental solution for the Green's function of concentric spheres using the addition theorem and image concept, BEM 31, New Forest, 2009.
[14] Chen J.T., Shieh H.C., Lee Y.T., Lee J.W., Image solutions for boundary value problems without sources, Applied Mathematics and Computation, 216 (2010) 1453-1468.
[15] Chen J.T., Lee Y.T., Lee J.W., Torsional rigidity of an elliptic bar with multiple elliptic inclusions using a null-field integral approach, Computational Mechanics, 46 (2010) 511-519.
[16] Chen J.T., Shieh H.C., Tsai J.J., Lee J.W., A study on the method of fundamental solutions using an image concept, Applied Mathematical Modelling, 34 (2010) 4253-4266.
[17] Chen J.T., Shieh H.C., Lee Y.T., Lee J.W., Bipolar coordinates, image method and the method of fundamental solutions for Green’s functions of Laplace problems containing circular boundaries, Engineering Analysis with Boundary Elements, (2010) Accepted.
[18] Chen J.T., An application of new error estimation technique in the meshless method and boundary element method, Master Thesis, Department of Civil Engineering, National Ilan University, Ilan, Taiwan, 2010. (in Chinese)
[19] Chen W., Tanaka M., Relationship between boundary integral equation and radial basis function, Invited talk to the 52th Symposium of Japan Society for Computational Methods in Engineering (JASCOME) on BEM, Tokyo, 2000.
[20] Chen W., Tanaka M., New insights into boundary-only and domain-type RBF methods, International of Journal of Nonlinear Sciences and Numerical Simulation, 1 (2000) 145-151.
[21] Chen W., New RBF collocation schemes and kernel RBF with applications, Lecture Note in Computational Science and Engineering, 26 (2002) 73-84.
[22] Chen W., Meshfree boundary particle method applied to Helmholtz problems, Engineering Analysis with Boundary Elements, 26 (2002) 557-581.
[23] Chen W., Symmetric boundary knot method, Engineering Analysis with Boundary Elements, 26 (2002) 489-494.
[24] Chen W., Tanaka M., A meshless, exponential convergence, integration-free, and boundary-only RBF technique, Computers and Mathematics with Applications, 43 (2002) 379-391.
[25] Chen W., Fu Z., Wei X., Potential problems by singular boundary method satisfying moment condition, Computer Modeling in Engineering and Sciences, 54 (2009) 65-85.
[26] Chen W., Fu Z., A novel numerical method for infinite domain potential problems, Chinese Science Bulletin, 55 (2010) No.16 1598-1603.
[27] Cochran A. J., Applied Mathematics: Principles, Techniques, and Applications, Belmont, Calif. : Wadsworth, 1982.
[28] Fan C.M., Chen C.S., Monroe J., The method of fundamental solutions for solving convection-diffusion equations with variable coefficients, Advances in Applied Mathematics and Mechanics, 1 (2009) 215-230.
[29] Greenberg M.D., Application of Green’s Functions in Science and Engineering, Prentice-Hill, New Jersey, 1971.
[30] Golberg M.A., Chen C.S., Ganesh M., Partcular solutions of 3D Helmholtz-type equations using compactly support radial basis function, Engineering Analysis with Boundary Elements, 24 (2000) 539-547.
[31] Heyda J.F., A Green’s function solution for the case of laminar incompressible flow between non-concentric circular cylinders, Journal of the Franklin Institute, 267 (1959) 25-34.
[32] Hon Y.C., Chen W., Boundary knot method for 2D and 3D Helmholtz and convection-diffusion problems under complicated geometry, International Journal for Numerical Methods in Engineering, 56 (2003) 1931-1948.
[33] Hon Y.C., Wei T., A fundamental solution method for inverse heat conduction problem, Engineering Analysis with Boundary Elements, 28 (2004) 489-495.
[34] Jin B., Zheng Y., Boundary knot method for some inverse problems associated with Helmholtz equation, International Journal for Numerical Methods in Engineering, 62 (2005) 1636-1651.
[35] Jin W.G., Cheung Y.K., Zienkiewicz O.C., Application of the Trefftz method in plane elasticity problems, International Journal for Numerical Methods in Engineering, 30 (1990) 1147-1161
[36] Jin W.G., Cheung Y.K., Zienkiewicz O.C., Trefftz method for Kirchhoff plate bending problems, International Journal for Numerical Methods in Engineering, 36 (1993) 765-781.
[37] Karageorghis A., A practical algorithm for determining the optimal pseudo-boundary in the method of fundamental solutions, Advances in Applied Mathematics and Mechanics, 1 (2009) 510-528.
[38] Katsikadelis J.T., The 2D elastostatic problem in inhomogeneous anisotropic bodies by the meshless analog equation method (MAEM), Engineering Analysis with Boundary Elements, 32 (2008) 997-1005.
[39] Katsikadelis J.T., The meshless analog equation method: I. Solution of elliptic partial differential equations, Archive of Applied Mechanics, 79 (2009) 557-578.
[40] Kita E., Kamiya N., Trefftz method: An overview, Advances in Engineering Software, 24 (1995) 3-12.
[41] Kita E., Katsuragawa J., Kamiya N., Application of Trefftz-type boundary element method to simulation of two-dimensional sloshing phenomenon, Engineering Analysis with Boundary Elements, 28 (2004) 677-683.
[42] Kupradze V.D., Aleksidze M.A., A method for the approximate solution of limiting problems in mathematical physics, Computational Mathematics and Mathematical Physics, 4 (1964) 199-205.
[43] Lebedev N.N., Skalskaya I.P., Uflyand Y.S., Worked Problems in Applied Mathematics, Dover Publications, New York, 1979.
[44] Li Z.C., Lu T.T., Hu H.Y., Cheng A.H.D., Trefftz and Collocation Methods. Boston-Southampton: WIT Press, 2007.
[45] Liu C.S, A highly accurate collocation Trefftz method for solving the Laplace equation in the doubly connected domains, Numerical Methods for Partial Differential Equations, 24 (2008) 179-192.
[46] Liu W.K., Jun S., Zhang Y.F., Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, 20 (1995) 1081-1106.
[47] Morse P.M. and Feshbach H., Method of Theoretical Physics. McGraw-Hill: New York, 1953.
[48] Mukherjee Y.X., Mukherjee S., The boundary node method for potential problems, International Journal for Numerical Methods in Engineering, 40 (1998) 797-815.
[49] Murota K., Comparison of conventional and “invariant” schemes of fundamental solutions method for annular domains, Japan Journal of Industrial and Applied Mathematics, 12 (1995) 61-85.
[50] Nishida K., Mathematical and numerical analysis of charge simulation method in 2-dimensional elliptic domains, The Japan Society for Industrial and Applied Mathematics, 5 (1995), 185-198.
[51] Saavedra I., Power H., Adaptive refinement scheme for the least-squares approach of the method of fundamental solution for three-dimensional harmonic problems, Engineering Analysis with Boundary Element, 28 (2004) 1123-1133.
[52] Saavedra I., Power H., Multipole fast algorithm for the least-squares approach of the method of fundamental solutions for three-dimensional harmonic problems, Numerical Methods for Partial Differential Equations, 19 (2003) 825-845.
[53] Schaback R., Adaptive numerical solution of MFS systems. A plenary talk at the first Inter Workshop on the Method of fundamental solution. Ayia Napa,Cyprus, (2007), June 11-13.
[54] Schaback R., Private Communications, 2007.
[55] Schaback R., Adaptive numerical solution of MFS systems, Dedicated to Professor Graeme Fairweather on the occasion of his 65th Birthday, 2007.
[56] Shieh H.C., A Study on the Green’s function for Laplace problems with circular and spherical boundaries by using the image method, Master Thesis, Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan, 2009.
[57] Sladek V., Sladek J., Atluri S.N., Van Keer R., Numerical integration of singularities in meshless implementation of local boundary integral equations, Computational Mechanics, 25 (2000) 394-403.
[58] Trefftz E., Ein Gegenstück zum Ritz’schen Verfahren. Proceedings of the 2nd international Congress on Applied Mechanics, Zürich, (1926) 131-137.
[59] Wang H., Qin Q.H., A meshless method for generalized linear or nonlinear Poisson-type problems, Engineering Analysis with Boundary Elements, 30 (2006) 515-521.
[60] Young D.L., Chen K.H., Lee C.W., Novel meshless method for solving the potential problems with arbitrary domain, Journal of Computational Physics, 209 (2005) 290-231.
[61] Young D.L., Fan C.M., Tsai C.C., Chen C.W., The method of fundamental solutions and domain decomposition method for degenerate seepage flownet problems, Journal of the Chinese Institute of Engineers, 29 (2006) No.1 63-67
[62] Young D.L., Chen K.H., Liu T.Y., Shen L.H., Wu. C.S., Hypersingular meshless method for solving 3D potential problems with arbitrary domain, Computer Modeling in Engineering and Sciences, 40 (2009) 225-269.
[63] Zielinski A.P., On trial function applied in the generalized Trefftz method, Advances in Engineering Software, 24 (1995) 147-155.
[64] 村島定行,代用電荷法的應用:境界值問題的半解析的近似解法,森北出版株式會社,1983。(in Japanese)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔