(3.236.222.124) 您好!臺灣時間:2021/05/13 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳坤億
研究生(外文):Kun-Yi Chen
論文名稱:鋼筋混凝土結構物在腐蝕環境下氯離子傳輸模型的敏感度研究
論文名稱(外文):Sensitivity Studies of Chloride Transport Models of Reinforced Concrete Structures in Corrosion Environments
指導教授:張建智梁明德
指導教授(外文):Jiang-Jhy ChangMing-Te Liang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:61
中文關鍵詞:對流擴散腐蝕起始時間氯離子傳輸模型使用壽命敏感度分析
外文關鍵詞:convectiondiffusioncorrosion initiation timechloride transport modelservice lifesensitivity analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
鋼筋混凝土結構在海洋環境和使用除冰鹽條件下氯離子是為引起混凝土中鋼筋腐蝕的主要劣化原因之一,在選擇一個可靠的使用壽命預測模型,模型參數值譬如像是鋼筋混凝土結構物暴露在氯離子環境的腐蝕初始時間是非常重要的,現有的模型大多是基於擴散項或擴散對流傳輸模型預測混凝土中氯離子含量的時間和空間變化。這些傳輸模式的控制參數,如混凝土保護層厚度,混凝土中氯離子擴散係數,表面氯離子濃度,氯離子臨界濃度,溫度,時間,材料常數和滲透係數。顯著的不確定性可能與一個或多個上述確定的參數有關。因此,著手敏感度研究俾利評估輸入參數不確定性對模型輸出的不確定性影響是具有必要性,本論文的主要目的是進行敏感度分析擴散項和擴散對流項模型。本文首先使用標稱範圍敏感度分析法進行研究多力學氯離子傳輸模式,然後使用示差敏感度分析法研究在氯離子環境下鋼筋混凝土結構物腐蝕初始模型。本研究的結果描述如下:
1.若沒有將結構真實的材料和環境性質納入於理論模型內,則使用此
模型預測鋼筋混凝土結構的使用壽命將被低估或高估。
2.如果滲透係數太小,則擴散對流腐蝕初始時間模型可由擴散腐蝕初
始時間模型取代。

The chloride-induced corrosion of the steel reinforcement in concrete is identifies as the main cause of deterioration of reinforced concrete (RC) structures under marine environment and deicing salt. A reliable prediction of service life such as the time to corrosion initiation of RC structures exposed to chlorides is very important for the selection of evaluation model techniques. Existing models are mostly based on the diffusion-based or diffusion-convection transport model for predicting the time and space variation of chloride content in concrete. These transport models have the governing parameters such as concrete cover depth, chloride diffusion coefficient in concrete, surface chloride concentration, chloride threshold level, temperature, time, material constant, and permeability coefficient. A considerable level of uncertainty may be associated with one or more of the above identified parameters. Therefore, carrying out a sensitivity analysis becomes necessary to evaluate the impact of uncertainties from the input parameters on the uncertainty of the model output. The main purpose of this article is carried out sensitivity analyses of the diffusion-convection and diffusion-based models. This article performed firstly sensitivity study of a multimechanistic chloride transport model using nominal range sensitivity analysis and then sensitivity study of corrosion initiations model of RC structures in chloride-laden environment using differential analysis technique. The results of the present study were described as follows:
1. The service life of a RC structure can be drastically under-or overestimated if efforts are not made to set realistically represent the material and environmental properties involved in the situation that is modeled.
2. If the hydraulic conductivity is too small to replace the diffusion-convection corrosion initiation model by the diffusion-based one.

目錄
頁次
中文摘要 I
英文摘要 Ⅲ
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XI

第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
1-3 研究方法 2
1-4 研究內容 2

第二章 多力學氯離子傳輸模型敏感度研究 4
2-1 前言 4
2-2 氯離子擴散 5
2-3 理論模式 7
2-3-1 傳輸方程式 7
2-3-2 擴散係數 10
2-3-3 滲透係數 11
2-4敏感度研究 12
2-5 結果與討論 13
2-6 結論 17

第三章 在氯離子環境下鋼筋混凝土結構物腐蝕初始時間模型的敏感度研究 19
3-1 前言 19
3-2 擴散式腐蝕初始時間模型 23
3-2-1 氯離子侵蝕RC結構物 23
3-2-2 氯離子擴散 24
3-2-3 傳輸方程式 25
3-2-4 擴散係數 27
3-2-5 滲透係數 27
3-2-6 鋼筋腐蝕 28
3-3示差敏感度分析法 29
3-4 敏感度分析的結論 32
3-5 結論 35
第四章 結論與建議 38
4-1 結論 38
4-2 建議 39

附錄 52
參考文獻 54

1. Bamforth, P. B., “Spreadsheet Model for Reinforcement Corrosion in Structures Exposed to Chlorides,”in: O. E..Gjorv, K. Sakai, N. Banthia (Eds.), Concrete under Severe Conditions 2, E & FN Spon, London, 1998, pp. 64-75.
2. Berveiller, M., Page, Y. L., and Sudret, B., “Sensitivity Analysis of the Drying Model on the Delayed Strain of Concrete in Containment Vessel with a Non Intrusive Stochastic Finite Element Method,” In Kanda, Takada and Furuta editors, Applications of Statistics and Probability in Civil Engineering, Taylor & Francis Group, London , 2007, pp.3-9.
3. Boddy, A., Bentz, E, Thomas, M. D. A., and Hooton, R. D., “An Overview and Sensitivity Study of a Multimechanistic Chloride Transport Model,”Cement and Concrete Research, Vol. 29, 1999, pp. 837-837.
4. Cady, P. D. and Weyers, R. E., “Deterioration Rate of Concrete Bridge Decks,” Journal of Transportation Engineering, Vol.110, No.1, 1984, pp.34-44.
5. Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, Second Edition, Oxford University Press. London, 1959.
6. Cheng, H. L., Sotelino, E. D., and Chen, W. F., “Sensitivity Study and Design Procedure for FRP Wrapped Reinforced Concrete Circular Columns,” International Journal of Applied Science and Engineering, Vol.2, No.2, 2004, pp.148-162.
7. Dhir, R. K. and Byars, E. A., “PFA Concrete: Chloride Diffusion Rates,” Magazine of Concrete Research, Vol. 45, No. 162, 1993. pp. 1-9.
8. Francy, O. and Francois, R., “Measuring Chloride Diffusion Coefficients from Non-steady State Diffusion Tests, ”Cement and Concrete Research. Vol. 28, No.7, 1998, pp. 947-953.
9. Guthrie, W. S., Prinkerton, T. M., and Eggett, D. L., October, “Sensitivity of Half-Cell Potential Measurements to Properties of Concrete Bridge Decks,” Report No. UT-08.21, Brigham Young University, Department of Civil and Environmental Engineering, 2008, 91PP.
10. Hildebrand, F. B., 1974, “Advanced Calculus for Application,” First Edition, Prentice-Hall, Inc., New York, N. Y., 1974, USA.
11. Hooton, R. D. and McGrath, P. F., “Issues Related to Recent Developments in Service Life Specifications for Concrete Structures,”in: L. O. Nilsson, J. P. Ollivier (Eds.), Chloride Penetration into Concrete, Proceedings of the International RILEM Workshop, St-Remy-les-Chevreuse, 1995, pp. 388-397.
12. Larson, R. and Edwards, B. H., “Calculus,” Ninth Edition, Brooks/Cole Cengage Learning, 2010, USA.
13. Lee. T. H. and Mosalam, K. M., “Seismic Demand Sensitivity of Reinforced Concrete Shear-wall Building Using FOSM Method,” Earthquake Engineering and Structural Dynamics, Vol.34, 2005, pp.1719-1736.
14. Liang, M. T., Lin, L. H., and Liang. C. H., “Service Life Prediction of Existing Reinforced Concrete Bridges Exposed to Chloride Environment” Journal of Infrastructure Systems, ASCE, Vol.8, No.3, 2002, pp.76-85.
15. Liang, M.T. and Lin, S.M., “Mathematical Modeling and Applications for Concrete Carbonation,” Journal of Marine Science and Technology, Vol.11, No.1, 2003, pp.20-33.
16. Liang, M. T., Huang, R., Fang, S. A., and Yeh, C. J., “Service Life Prediction of Pier for the Existing Reinforced Concrete Bridges in Chloride-Laden Environment,” Journal of Marine Science and Technology, Vol.17, No.4, 2009, pp.312-319.
17. Lisantono, A., “Sensitivity of Shear Retention Factor in Nonlinear Finite Element Analysis of Torsional Reinforced Concrete Hybrid Deep T-Beams,” Teknik Spipil Vol.6, No.1, 2005, pp.36-43.
18. Lounis, Z., Siemes, A. J. M., Lacasse, M., and Moser, K., “Further Steps towards a Quantitative Approach to Durability Design, Materials and Technologies for Sustainable Construction, ”CIB World Congress, Gävle, Sweden, 1998, pp. 315-328.
19. Lounis, Z., “Reliability-based Life Prediction of Aging Bridge Decks, ”in: D. Naus(Ed.), Life Prediction and Aging Management of Concrete Structures, RILEM Publications, France, 2000, pp. 229-238.
20. Lounis, Z., “Uncertainty Modeling of Chloride Contamination and Corrosion of Concrete Bridge, ”in: N. O. Altoh-Okin, B. Ayyub (Eds.), Applied Research in Uncertainty Modeling and Analysis, Springer, 2004, pp. 491-511, Chapter 22.
21. Lu, X. Y., Li, C. L., and Zhang, H. X., “Relationship between the Free and Total Chloride Diffusivity in Concrete, ”Cement and Concrete Research, Vol. 32, No. 2, 2002, pp. 323-326.
22. Mangat, P. S. and Molloy, B. T., “Prediction of Long Term Chloride Concentration in Concrete, ”ACI Materials and Structures, Vol. 27. 1994, pp. 338-346.
23. Mangat; P. S. and Molloy, B. T., “Chloride Binding in Concrete Containing PFA, GBS or Silicate Fume under Sea Water Exposure, ”Magazine of Concrete Research, Vol. 47, No. 171, 1995, pp.129-141.
24. Martin-Perez, B., Zibara, H., Hooton, R. D., and Thomas, M. D. A.,“ A Study of the Effect of Chloride Binding on Service Life Predictions, ”Cement and Concrete Research, Vol. 30, 2000, pp. 1215-1223.
25. Mejlhede Jensen, O., Freiesleben Hansen, P., Coats, A. M., and Glasser, F. P., “Chloride Ingress in Cement Paste and Mortar, ”Cement and Concrete Research, Vol. 29, 1999, pp. 1497-1504.
26. Melchers, R. E., Structural Reliability-Analysis and Prediction, Ellis Horwood, Chicheater, UK. 1987.
27. Nilsson, L. O., Massat, M., and Tang, L., “The Effect of Nonlinear Chloride Binding on the Prediction of Chloride Penetration into Concrete Structures, ”in: V. M. Malhotra (Ed.), Dwalility of Concrete, ACI, Detroit, 1994, pp. 469-486.
28. O’Neil, P. V., Advanced Engineering Mathematics, 5th Edition, Thomson Brooks/Cole, USA, 2003.
29. Page, C. L., Short, N.R., and El Tarras, A., “Diffusion of Chloride Ions into Handered Cement Paste, ”Cement and Concrete Research, Vol. 11, No. 3, 1981, pp. 395-406.
30. Sahab, M. G., “Sensitivity of the Optimum Design of Reinforced Concrete Flat Slab Building to the Unit Cost Components and Characteristic Material Strengths,” Asia Journal of Civil Engineering(Building and Housing) Vol.9, No.5, 2008, pp.487-503.
31. Saltelli, A., Tarantola, S., and Campolongo, F., “Sensitivity Analysis as an Ingredient of Modeling, ”Statistical Science, Vol. 5, No. 4, 2000, pp. 377-395.
32. Sandberg, P., “Studies of Chloride Binding in Concrete Exposed in a Marine Environment,”Cement and Concrete Research, Vol. 29, 1999, pp. 473-477.
33. Sergi, G., Yu, S. W., and Page, C. L., “Diffusion of Chloride and Hydroxyl Ions in Cementitious Materials Exposed to a Saline Environment,”Magazine of Concrete Research, Vol. 44, No.158, 1992, pp. 63-69.
34. Tang, L. P. and Nilsson, L. O., “Rapid Determination of the Chloride Diffusion in concrete by Applying an Electrical Field, ”ACI Materials Journal, Vol. 89, No.1, 1992, pp. 49-53.
35. Tang, L. P. and Nillson, L. O.,“ Chloride Binding Capacity and Binding Isothermos. Of OPC Pastes and Mortars, “Cement and Concrete Research, Vol. 23. No. 2, 1993, pp. 247-253.
36. Treadaway, K., “Corrosion Period,” in: P. Schiessl, (Ed.), Corrosion of Steel in Concrete, Chapman and Hall, 1988, London.
37. Tuutti, K., “Corrosion of Steel in Concrete,” CBI Research Report, Vol.4:82, Swedish Cement and Concrete Research Institute, 1982, Stockholm.
38. Varberg, D., Purcell, E. J., and Rigdon, S. E., “Calculus,” Ninth Edition, Pearson Prentice Hall, Pearson Education, Inc., 2007, USA.
39. Yang, Y., Hu, Y. and Lu, Y., “Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures,” Sensors, Vol.8, 2008, pp.327-346.
40. Zhang, J. and Lounis, Z., “Sensitivity Analysis of Simplified Diffusion-based Corrosion Initiation Model of Concrete Structures Exposed to Chlorides,” Cement and Concrete Research, Vol.36, 2006, pp.1312-1323.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔