(18.206.187.91) 您好!臺灣時間:2021/05/19 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:呂彥鋒
研究生(外文):Yen-Feng Lu
論文名稱:以酵素法水解幾丁聚醣製備葡萄糖胺及其水解產物之抗氧化活性
論文名稱(外文):Glucosamine prepared by enzymatic hydrolysis of chitosan and the antioxidant activities of the hydrolysate
指導教授:洪良邦洪良邦引用關係
指導教授(外文):Lang-Bang Hung
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
中文關鍵詞:幾丁聚醣葡萄糖胺酵素水解抗氧化
外文關鍵詞:ChitosanGlucosamineEnzymatic hydrolysisAntioxidant activities
相關次數:
  • 被引用被引用:1
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:1
以去乙醯化程度為 85% 之幾丁聚醣為原料,利用商用纖維素酶和幾丁聚醣酶水解製備葡萄糖胺,其最適水解條件分別是 pH 5.5、55℃、酵素基質比例為 10/100 (w/w) 以及 pH 5.5、45℃、酵素基質比例為 20/100 (w/w)。
根據黏度的變化以及葡萄糖胺的產率得知纖維素酶為較適合水解幾丁聚醣製備葡萄糖胺之酵素,經由纖維素酶水解 24 小時後葡萄糖胺之產率為 7.2% 高於幾丁聚醣酶的 4.8%。
以纖維素酶進行饋料批式水解 (fed-batch hydrolysis) 幾丁聚醣,在水解 1及 3 小時後添加基質與酵素,使水解的基質從原來的 1% 增加至 2%,酵素基質比例則維持在 10/100 (w/w),水解達到 24 小時後,葡萄糖胺的產量可從原先的 720 增加至 1252 ppm。
幾丁寡糖 (chitooligosaccharide) COS1 及 COS2 分別是利用纖維素酶及幾丁聚醣酶水解幾丁聚醣 24 小時後的產物,其平均分子量分別為 1.3 及 2.2 kDa。抗氧化能力方面,COS2 在濃度為 20 mg/mL 下,有較好的螯合亞鐵能力,其螯合能力為 45%;而在濃度為 10 mg/mL 下,COS2 也比 COS1 有較佳的 DPPH 自由基清除能力及 Trolox 當量抗氧化能力。而葡萄糖胺則有最高的還原能力。

Two different commercial enzymes, cellulase and chitosanase, were used to hydrolyze a chitosan sample of which the degree of deacetylation is 85% for preparation of glucosamine. The optimal reaction conditions for cellulase was 55℃ at pH 5.5 with enzyme/substrate ratio of 10/100, and 45℃ at pH 5.5 with enzyme/substrate ratio of 20/100 for chitosanase.
According to the viscosity decrease and glucosamine yield, cellulase was found to be better for preparing glucosamine. As a result, cellulase produced a higher yield of glucosamine than chitosanase did after 24 hours of hydrolysis. The production yield were 7.2 and 4.8%, for cellulase and chitosanase, respectively.
Fed-batch hydrolysis process was started with a bath hydrolysis containing 1% substate, with both chitosan and enzyme adding after 1 and 3 hours to get a final substrate concentration of 2%, the enzyme/substrate ratio was maintained at 10/100 (w/w). After 24 hours of reaction, the concentration of glucosamine increased 720 to 1252 ppm.
Chitooligosaccharides (COS1 and COS2) with different molecular weights were prepared by cellulase and chitosanase. The molecular weight were 1.3 and 2.2 kDa, respectively. Their antioxidant activities were also determined. At the concentration of 20 mg/mL, COS2 had better ferrous ion chelating activity of which is 45%. At the concentration of 10 mg/mL, the COS2 exhibited higher DPPH radicals scavenging and Trolox equivalent antioxidant capacity than COS1. Glucosamine had the highest reductive capacity.

摘要I
目錄III
表目錄VI
圖目錄VII
壹、前言1
貳、文獻整理3
ㄧ、幾丁質與幾丁聚醣3
(ㄧ)幾丁質與幾丁聚醣之分佈3
(二)幾丁質與幾丁聚醣之結構3
二、幾丁質及其衍生物之應用4
(ㄧ)食品方面4
(二)生物醫學方面5
三、葡萄糖胺6
(一)葡萄糖胺之特性6
(二)葡萄糖胺之分析7
四、幾丁聚醣水解物之製備8
(ㄧ)降解方法8
1. 物理方法8
2. 化學法8
3. 酵素法9
(二)幾丁聚醣水解酵素10
1. 專一性酵素10
2. 非專一性酵素11
3. 酵素反應模式14
五、抗氧化15
(一)自由基與抗氧化劑15
(二)抗氧化劑之分類16
六、幾丁聚醣之抗氧化活性18
(一)抗氧化機制18
(二)抗氧化效果18
参、材料與方法21
ㄧ、實驗材料21
(ㄧ)樣品 21
(二)標準品21
(三)藥品 21
(四)酵素 22
(五)層析管柱22
(六)儀器設備22
二、實驗方法24
(ㄧ)酵素水解幾丁聚醣之最適作用條件探討24
(二)還原醣標準曲線25
(三)黏度及還原醣產量之測定26
(四)幾丁聚醣水解液之製備26
(五)饋料批次酵素水解27
(六)葡萄糖胺之分析27
(七)分子量之測定28
(八)抗氧化活性之測定29
(九)統計分析32
肆、結果與討論33
一、酵素水解之最適作用條件33
(一) pH 值33
(二)溫度33
(三)酵素/基質比 (enzyme/substrate, E/S)34
二、酵素水解幾丁聚醣之變化35
(一)不同水解時間之還原醣產量35
(二)不同水解時間之黏度變化36
三、葡萄糖胺之產率 37
四、饋料批次酵素水解 (fed-batch hydrolysis)39
五、抗氧化活性40
(一)幾丁寡醣分子量40
(二)抗氧化試驗40
1.DPPH (α,α-diphenyl-β-picrylhydrazyl)自由基清除能力40
2.亞鐵離子螯合能力41
3.還原力測定42
4.Trolox 當量抗氧化能力 (TEAC) 測定43
伍、結論44
陸、參考文獻45


吳柏宏,(2004)。自由基、老化與抗氧化配方。食品工業,36(12): 45-51。
林天送,(2002)。你的生命活力—從自由基談起。健康文化出版社,臺北,臺灣。
林天送,(2008)。自由基化學與醫學。科學發展,432: 48-53。
林旺熠,(2005)。食品添加物。華格那企業有限公司,154-196。
姜淑繡,(2001)。省產蘿蔔之抗氧化性研究。大葉大學食品工程學系碩士學位論文,彰化,臺灣。
張文智,(2001)。微生物所生產幾丁質酶於食品及農業上應用。生物資源,生物技術,3(3): 27-31。
陳福智,(1999)。幾丁寡糖之高效能液相層析分離及葡萄糖苯甲醯化之探討。國立海洋大學食品科學系碩士學位論文,基隆,臺灣。
陳澄河,(2003)。蝦蟹殼傳奇。科學發展,369: 62-67。
錢阜甯,(2004)。葡萄糖胺之簡介。食品工業,36(2): 11-18。
Allan, G. G., and Peyron, M. (1995). Molecular weight manipulation of chitosan. Kinetics of depolymerization by nitrous acid. Carbohydrate Research. 277: 257-272.
Ancerewicz, J., Migliavacca, E., Carrrupt, P. A., Testa, B., Bree, F., Zini, R. (1998). Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radical Biology and Medicine. 25(1): 113-120.
Andre, C., Castanheira, I., Cruz, J. M., Paseiro, P., and Sanches-Silva, A. (2010). Analytical strategies to evaluate antioxidants in food: A Review. Trends in Food Science and Technology. 21: 229-246.
Arouma, O. I. (1994). Nutrition and health aspects of free radical and antioxidants. Food and Chemical Toxicology. 32(7): 671-683.
Arts, M. J. T. J., Dallinga, J. S., Voss, H. P., Haenen, G. R. M. M., and Bast, A. (2004). A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chemistry. 88: 567-570.
Bruyere, O., Honore, A., Ethgen, O., Rovati, L. C., Giacovelli, G., Henrotin, Y. E., Seidel, L., and Reginster, Y. L. (2003). Correlation between radiographic severity of knee osteoarthritis and future disease progression. Results from a 3-year prospective placebo-controlled study evaluating the effect of glucosamine sulfate. Osteoarthritis Research Society. 11(1): 1-5.
Cabrera, J. C., and Van Cutsem, P. (2005). Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal. 25: 165-172.
Cam, M., Hisil, Y., and Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry. 112: 721-726.
Chen, J. Y., and Wu, G. M. (2003). Effect of cellulase on chitosan hydrolysis. Journal of Guangdong Medical College. 21:105-107.
Chen, M., Xia, L., and Xue, P. (2007). Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration and Biodegradation. 59: 85-89.
Chen, W., Luo, Z., Li, Z., and Huang, Q. (2006). Application of physical methods on degradation of chitosan. Liquor-making Science and Technology. 33(2): 57-60.
Chen, X., Xia, W., and Yu, X. (2005). Purification and characterization of two types of chitosanase from Aspergillus sp. CJ22-326. Food Research International. 38: 315-322.
Chiang, C. L., Chang, C. T., and Sung., H. Y. (2003). Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme and Microbial Technology. 32: 260-267.
Chiang, C. L., Chang, Y. M., Chang, C. T., and Sung, H. Y. (2005). Characterization of a chitosanase isolated from a commercial ficin preparation. Journal of Agricultural and Food Chemistry. 53: 7579-7585.
Chiang, M. T., Yao, H. T., and Chen, H. C. (2000). Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Bioscience Biotechnology and Biochemistry. 64: 965-971.
Chien, P. J., Sheu, F., Huang, W. T., and Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry. 102: 1192-1198.
Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., and Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry. 115: 66-70.
Feng, T., Du, Y., Li, J., Hu, Y., and Kennedy, J. F. (2008). Enhancement of antioxidant activity of chitosan by irradiation. Carbohydrate Polymers. 73: 126-132.
Feng, T., Gong, J., Du., Y., and Huan., Z. (2008). Free radical scavenging activity of cellulase-treated chitosan. Journal of Applied Polymer Science. 111: 545-550.
Fu, J. Y., Wu, S. M., Chang, C. T., and Sung, H. Y. (2003). Characterization of three chitosanase isozymes isolated from a commercial crude porcine pepsin preparation. Journal of Agricultural and Food Chemistry. 51: 1042-1048.
Gao, X. A., Ju, W. T., Jung, W. J., and Park R. D. (2008). Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers. 72: 513-520.
Guan, Y., Chu, Q., Fu, L.,Wu, T., and Ye, J. (2006). Determination of phenolic antioxidants by micellar electrokinetic’s capillary chromatography with electrochemical detection. Food Chemistry. 94: 157-162.
Gutteridge, J. M. C. (1993). Free radicals in disease process: A compilation of cause and consequence. Free Radical Research Communication. 19: 141.
Halliwell, B. and Gutteridge, J. M. C. (1990). The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics. 280: 1-8.
Halliwell, B., Murcia, M. A., Chirico, S., and Aruoma, O. I. (1995). Free radicals and antioxidants in food and vivo: What they do how they do and how they work. Critical Review in food Science and Nutrition. 35: 7-20.
Hua, J., Suguro, S., Iwabuchi, K., Tsutsumi-Ishii, Y., Sakamoto, K., and Nagaoka, I. (2004). Glucosamine: A naturally occurring amino monosaccharide, suppresses the ADP-mediated platelet activation in humans. Inflammation Rresearch. 53(12): 680-688.
Huang, D., Ou, B., and Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry. 53: 1841-1856.
Huang, R., Rajapakse, N., and Kim, S. K. (2006). Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydrate Polymers. 63: 122-129.
Hung, T. H., Chang, Y. M., Sung, H. Y., and Chang, C. T. (2002). Purification and characterization of hydrolase with chitinase and chitosanase activity from commercial stem bromelain. Journal of Agricultural and Food Chemistry. 50: 4666-4673.
Ike, M., Ko, Y., Yokoyama, K., Sumitani, J.I., Kawaguchi, T., Ogasawara, W., Okada, H., and Morikawa, Y. (2007). Cellobiohydrolase I from Trichoderma reesei has chitosanase activity. Journal of Molecular Catalysis B: Enzymatic. 47: 159-163.
Ilyina, A. V., Tikhonov, V. E., Albulov, A. I., and Varlamov, V. P. (2000). Enzymic preparation of acid-free-water-soluble chitosan. Process Biochemistry. 35: 563-568.
Je, J. Y., Park, P. J., and Kim, S. K. (2004). Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food and Chemical Toxicology. 42: 381-387.
Jia, Z., and Shen, D. (2002). Effect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydrate Pomlyers. 49: 393-396.
Johnson, K. A., Hulse, D. A., Hart, R. C., Kochevar, D., and Chu, Q. (2001). Effects of an orally administered mixture of chondroitin sulfate, glucosamine hydrochloride and manganese ascorbate on synovial fluid chondroitin sulfate 3B3 and 7D4 epitope in a canine cruciate ligament transection model of osteoarthritis. Osteoarthritis Research Society. 9(1): 14-21.
Kabalnova, N. N., Murinov, K. Y. U., Mullagalive, I. R., Krasnogorskaya, N. N., Shereshovets, V. V., Monakov, Y. U. B. (2001). Oxidative destruction of chitosan under the effect of ozone and hydrogen peroxide. Journal of applied Polymer Science. 81:875-881.
Kamil, Y. V. V. A., Jeon, Y. J., and Shahidi, F. (2002). Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food Chemistry. 79: 69-77.
Khor, E., and Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials. 24: 2339-2349
Kim, K. W., and Thomas, R. L. (2007). Antioxidative activity of chitosan with varying molecular weight. Food Chemistry. 101: 308-313.
Kim, S. K., and Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers. 62: 357-368.
Kittur, F. S., Vishu Kumar, A. B., Gowda, L. R., and Tharanathan, R, N, (2003). Chitosanolysis by pectinase isozyme of Aspergillus niger: A non-specific activity Carbohydrate Polymers. 53(2): 191-196.
Kolasinski, S. L. (2001). Complementary and alternative therapies for rheumatic disease. Hospital Practice. 36(4): 31-36,39.
Kulkarni, A. P., Aradhya, S. M., and Divakar, S. (2004). Isolation and identification of a radical scavenging antioxidant punicalagin from pith and carpellary membrane of pomegranate fruit. Food Chemistry. 87: 551-557.
Kumar, A. B. V., and Tharanathan, R. N. (2004). A comparative study on depolymerization of chitosan by proteolytic enzyme. Carbohydrate Polymers. 58: 275-283.
Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science. 26: 1921-1971.
Kuroiwa, T., Ichikawa, S., Sato, S., Hiruta, O., Sato, S., and Mukataka, S. (2002). Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases. Biotechnology Progress. 18: 969-974.
Lee, D. X., Xia, W. S., and Zhang, J. L. (2008) Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chemistry. 111: 291-295
Li, J., Yang, J., Feng, T., Li, A., and Chen, P. (2005) Preparation and characterization of low molecular weight chitosan and chito-oligomer by a commercial enzyme. Polymer Degradation and Stability. 87: 441-448.
Lin, H. Y., and Chou, C. C. (2004). Antioxidative activities of water-soluble disaccharide chitosan derivatives. Food Research Internationa. 37: 883-889.
Lin, S. B., Lin, Y. C., and Chen, H. H. (2009). Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity. Food Chemistry. 116: 47-53.
Lin, Y. W., Hsiao, Y. C., and Chiang, B. H. (2009). Production of high degree polymerized chitooligosaccharides in a membrane reactor using purified chitosanase from Bacillus cereus. Food Research International. 42: 1355-1361.
Lippiello, L., Woodward, J., Karpman, R., and Hammad, T. A. (2000). In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clinical Orthopaedics and Related Research 381: 229-240.
Liu, H., Bao, J., Du, Y., Zhou, X., and Kennedy, J. F. (2006). Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydrate Polymers. 64: 553-559.
Liu, J., and Xia, W. (2006). Purification and characterization of a bifunctional enzyme with chitosnase and cellulase activity from commercial cellulase. Biochemical Engineering Journal. 30: 82-87.
Liu, J., Zhang, J., and Xia, W. (2008). Hypocholesterolemic effects of different chitosan samples in vitro and in vivo. Food chemistry. 107: 419-425.
Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., and Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers. 64: 60-65.
Lu, S. Y., Gao, W. J., and Gu, H. Y. (2008). Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns. 34(5): 623-628.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31: 426-428.
Mongkol, S., Zhu, H., Sashiwa, H., and Aiba, S. I. (2002). Utilization of commercial non-chitinase enzyme from fungi for preparation of 2-acetamido-2-deoxy-D-glucose from β-chitin. Carbohydrate Research. 337: 133-137.
Muzzarelli, R. A. A. (1997). Human enzymic activities related to the therapeutic administration of chitin derivatives. Cellular and Molecular Life Sciences. 53(2): 131-140.
Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 35: 771-775.
Pellegrini, R., Proteggente, N., Pannala, A., Yang, A., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237.
Priyadarsini, K. I., Kapoor, S., and Naik, D. B. (2001). One-and two-electron oxidation reactions of Trolox by peroxynitrite. Chemical Research in Toxicology. 14: 567-571.
Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., and Du, Y. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers. 63: 367-374.
Qin, C., Zhou, B., Zeng, L., Zhang, Z., Liu, Y., Du, Y., and Xiao, L. (2004). The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chemistry. 84: 107-115.
Ravindra, R., Krovvidi, K. R., and Khan, A. A. (1998). Solubility parameter of chitin and chitosan. Carbohydrate Polymers. 36: 121-127.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31: 603-632.
Rudolf, A., Alkasrawi, M., Zacci, G. and Liden, G. (2005). A comparison between bath and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology. 37: 195-204.
Sakai, K., Katsumi, R., Isobe, A., and Nanjo, F. (1991). Purification and hydrolytic action of a chitosanase from Nocardia orientalis. Biochimica et Biophysica Acta. 1097: 65-72.
Sardar, M., Roy, I., and Gupta, M. N. (2003). A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan. Biotechnology Progress. 19: 1654-1658.
Shahidi, F. (1997). Natural antioxidants: Chemistry, health effects and applications. Champaign, IL: American Oil Chemists’ Society Press. pp. 301-307.
Shahidi, F., Arachchi, J. K. V., and Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science and Technology. 10: 37-51.
Shao, J., Yang, Y., and Zhong, Q. (2003). Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation. Polymer Degradation and Stability. 82: 395-398.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry. 40: 945-948.
Somasheka., D., and Joseph, R. (1996). Chitosanase-properties and applications: A Review. Bioresource Technology. 55: 35-45.
Sun, T., Zhou, D., Xie, J., and Mao, F. (2007). Preparation of chitosan oligomers and their antioxidant activity. European food research and technology. 225: 451-456.
Tomas, R., Alberto, O., Iratxe, L. D. A., Laura, F., and Villaran, M. C. (2007). High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of high deacetylation degree chitosan. Carbohydrate Research. 342: 2750-2756
Tsigos, I., Martinou, A., Kafetzopoulos, D., and Bouriotis, V. (2000). Chitin deacetylases: New, versatile tools in biotechnology. Trend In Biotechnology. 18: 305-312.
Tual, C., Espuche, E., Escoubes, M., and Domard, A. (2000). Transport properties of chitosan membranes: Influence of crosslinking. Journal of Polymer Science. 38: 1521-1529.
Varum, K. M. Anthonsen, M. W. Grasdalen, H. and Smidsrod, O. (1991). Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field NMR spectroscopy. Carbohydrate Research. 211: 17-23.
Varum, K. M., Ottoy, M. H., and Smidsrod, O. (2001). Acid hydrolysis of chitosans. Carbohydrate Polymers. 46: 89-98.
Wang, T., Turhan, M., and Gunasekaran, S. (2004). Selected properties of pH-sensitive, biodegradable chitosan-poly (vinyl alcohol) hydrogel. Polymer International. 53: 911-918.
Wettasinghe, M., and Shahidi, F. (2000). Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chemistry. 70(1): 7-26.
Wu, G. J., and Tsai, G. J. (2004). Cellulase degradation of shrimp chitosan for the preparation of a water-soluble hydrolysate with immunoactivity. Fisheries Science. 70: 1113-1120.
Xia, W. S., and Lee, D. X. (2008). Purification and characterization of exo-β-D-glucosaminidase from commercial lipase. Carbohydrate Polymers. 74: 544-551.
Xia, W., Liu, P., and Liu, J. (2008). Advance in chitosan hydrolysis by non-specific cellulases. Bioresource Technology. 99: 6751-6762.
Xie, W., Xu, P., and Lu, Q. (2001). Antioxidative activity of water-soluble chitosan derivatives. Bioorganic and Medicinal Chemistry Letters. 11: 1699-1701.
Xing, R., Liu, S., Yu, H., Zhang, Q., Li, Z., and Li, P. (2004). Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydrate Research. 339: 2515-2519.
Xing, R., Liu., S., Guo, Z., Yu, H., Li, C., Ji, X., Feng., J., and Li, P. (2006). The antioxidant activity of glucosamine hydrochloride in vitro. Bioorganic and Medicinal Chemistry. 14: 1706-1709.
Xue, C., Yu, G., Hirata, T., Terao, J., and Lin, H, (1998). Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents. Bioscience, Biotechnology and biochemistry. 62: 206-209.
Yang, Y., Liu, W., Han, B. Wang, C., Fu, C., Liu, B., and Chen, L. (2007). The antioxidantive and immunostimulating properties of D-glucosamine. International Immunopharmacology. 7: 29-35.
Yang, Y., Shu, R., Shao, Jian., Xu, G. and Gu, X. (2006). Radical scavenging activity of chitooligosaccharide with different molecular weights. European Food Research and Technology. 222: 36-40.
Yao, H. T., and Chiang, M. T. (2006a). Chitosan shifts the fermentation site toward the distal colon and increases the fecal short chain fatty acids concentrations in rats. International journal for vitamin and nutrition research. 76: 57-64.
Yao, H. T., and Chiang, M. T., (2006b). Effect of chitosan on plasma lipids, hepatic lipids, and fecal bile acid in hamsters. Journal of Food and Drug Analysis. 14: 183-189.
Yao, H. T., Hwang, S. Y., and Chiang, M. T. (2006). Effect of chitosan on plasma cholesterol and glucose concentration in streptozotocininduced diabetic rats. Taiwan Journal of Agricultural Chemistry and Food Science. 44: 122-132.
Yen, G. C., and Chung, D. Y. (1999). Antioxidant effects of extracts from Cassia tora L. prepared under different degrees of roasting on the oxidative damage to biomolecules. Journal of Food Chemistry. 47: 1326-1332.
Yen, M. T., Yang, J. H., and Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers. 74: 840-844.
Yen, M. T., Yang, J. H., and Mau, J. L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers. 75: 15-21.
Yingyuad, S., Ruamsin, S., Reekprkhon, D., Douglas, S., Pongamphai, S., and Siripatrawan, U. (2006). Effect of chitosan coating and vacuum packaging on the quality of refrigerated grilled pork. Packaging Technology and Science, 19: 149-157.
Yue, w., He, R., Yao, P., and Wei, Y. (2009). Ultraviolet radiation-induced accelerated degradation of chitosan by ozone treatment. Carbohydrate Polymers. 77: 639-642.
Zhang, H., and Neau, S. H. (2001). In vitro degradation of chitosan by a commercial enzyme preparation: Effect of molecular weight and degree of deacetylation. Biomaterials. 22: 1653-1658.
Zhang, X. Y., Dai, A. L., Zhang, X. K., Kuroiwa, K., Kodaira, R., and Shimosaka, M. (2000). Purification and characterization of chitosanase and exo-β-Dglucosaminidase from a Koji Mold, Aspergillus oryzae IAM2660. Bioscience, Biotechnology and Biochemistry. 64: 1896-1902.
Zhu, X., Wang, Q., Cao, J., and Jiang, W. (2008). Effects of chitosan coating on postharvest quality of mango fruit. Journal of Food Processing and Preservation. 32: 770-784.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top