(3.227.0.150) 您好!臺灣時間:2021/05/08 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇菲恩
研究生(外文):Mohamed-Sofiane Mahjoub
論文名稱:以浮游生物為餌料之仔稚魚在平靜與亂流條件下之掠食者與獵物間的互動關係研究
論文名稱(外文):Predator-prey interactions under calm and turbulent conditions: experimental studies on planktivorous fish
指導教授:黃將修蘇逸熙François. G. Schmitt
指導教授(外文):Jiang-Shiou HwangSami SouissiFrançois. G. Schmitt
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:142
中文關鍵詞:浮游生物仔稚魚亂流瑪拉巴石斑歐洲真白鮭歐洲舌齒鱸豐年蝦真寬水蚤橈足類掠食行為行為
外文關鍵詞:planktonfish larvaturbulencemalabar grouperEuropean whitefishEuropean sea bassArtemia sp.Eurytemora affiniscopepodpredationbehavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
本論文實驗觀察了仔稚魚與他們浮游性活餌間的『掠食-活餌』互動作用。首先,本研究利用小尺度的掠食實驗來觀察仔稚魚搜尋行為的靈活性與其影響的浮游生物之游泳行為在『掠食-活餌』中的互動。本論文使用了平面 (2D) 與立體 (3D) 錄影技術來觀察每一隻仔稚魚的攝食速率與捕食成功率。掠食者與活餌的游泳行為模式分成刻度-相依 (速度、加速、固定距離、淨/總移位比率) 與刻度不相依 (碎形尺度、多維碎形分析) 兩大項目進行量化處理。結果顯示仔稚魚會轉換其搜尋行為,從沒有活餌情況下的各向異性多維碎形模式變成有活餌情況的等向性模式。這個結果符合過去的報告所呈現,於自然環境下浮游性活餌的行為模式為多維碎形不勻稱分佈。本實驗亦發現游泳行為不僅決定了兩者間的遭遇率,也決定了捕食的成功率。事實上,不複雜的追擊行為配合短距離的攻擊模式大大的增加了捕食的成功率。調查結果發現,活餌的游泳行為在與掠食者之互動中是容易招致傷害的,本論文的實驗也證實了先前的理論研究,快速移動的活餌比慢速移動的活餌容易被看見而招致被捕食。在第二部份,大刻度的實驗其目的在於闡明亂流對於仔稚魚捕食成功表現的影響。從胃內容物分析結果發現,仔稚魚在捕食不會躲避的餌食 (Artemia sp. 與死的橈足類) 條件下,增加亂流對於浮游性掠食者的攝食率有負面的影響,本實驗結果顯示亂流也衝擊了最大食物攝取量。反過來說,仔稚魚在捕食會躲避的活餌條件下,和緩的亂流對於仔稚魚的攝食率有正面的助益。
In this thesis experimentally investigated predator-prey interactions between larval and juvenile fish with their planktonic prey. At first, we conducted small-scale predation experiments to investigate the flexibility of fish larvae search behavior as well as the effect plankters’ swimming behavior on the predator-prey interaction. 2D and 3D video techniques were used to investigate parameters such as the ingestion rate and the capture success at the individual level. Swimming patterns of both predators and preys were quantified using both scale-dependent (Speed, acceleration, fixation distance, net to gross displacement ratio) and scale-independent (Fractal dimension, multifractal analysis) metrics. Results revealed that fish larvae switch from an anistropic multifractal search pattern in absence of prey to an isotropic spatially-restricted search behavior when food is present. We also demonstrated that swimming behavior not only governs encounter rates but also the capture success. In fact, less complex pursuits associated to attacks from shorts distances yield highest capture success. The investigation of the effect of prey swimming behavior on the vulnerability to predation corroborated previous theoretical studies that faster preys are more conspicuous to predation than slower ones. In a second part of this work, larger scale experiments aiming at the elucidation of the effects of turbulence on feeding success of fish larvae offered realistic prey densities. The results of gut contents analysis of fish feeding under increasing turbulence levels revealed that turbulence has negative effects on the feeding rates and maximum food intake of planktonic predators when preying on a non-evasive prey (Artemia). Conversely, when feeding on an evasive prey (live copepod), moderate turbulence was beneficial to fish.
Acknowledgements ......................................................................................................................... 1
Substantial abstract (french) ........................................................................................................... 3
Abtract (chinese) ............................................................................................................................. 5
Abstract (english) ............................................................................................................................ 7
Abstract (french) ............................................................................................................................. 9
Host laboratories ........................................................................................................................... 11
Table of contents ........................................................................................................................... 12
List of figures ............................................................................................................................... 18
List of tables ................................................................................................................................. 21
List of abbreviations ..................................................................................................................... 23
Chapter 1. General introduction and thesis outline ................................................................ 25
1.1 Larval fish, prey and encounters ................................................................................... 26
1.2 Thesis overview ............................................................................................................ 28
Chapter 2. Role of swimming behavior and turbulence in the predator-prey interaction: A
literature review ............................................................................................................................ 31
2.1 Introduction ................................................................................................................... 32
2.2 Role of swimming behavior in the predator-prey interaction ....................................... 32
2.2.1 Role of swimming behavior in encounter ................................................................. 35
2.2.2 Role of swimming behavior in pursuit success ......................................................... 35
2.2.3 Role of swimming behavior in attack and capture success ....................................... 36
2.3 Role of turbulence in the predator-prey interaction ...................................................... 36
2.3.1 Role of turbulence in encounter ................................................................................ 39
2.3.2 Role of turbulence in pursuit success ........................................................................ 40
2.3.3 Role of turbulence in attack and capture success ...................................................... 41
Chapter 3. Swimming behavior of Malabar grouper (Epinephelus malabaricus) larvae in
response to Artemia sp. availability .............................................................................................. 42
3.1 Introduction ................................................................................................................... 43
3.2 Material and methods .................................................................................................... 44
3.2.1 Experimental animals................................................................................................ 44
3.2.2 Experimental vessel size ........................................................................................... 45
3.2.3 Video set-up .............................................................................................................. 45
3.2.4 Experimental procedure ............................................................................................ 45
3.2.5 Video analyses .......................................................................................................... 46
3.2.6 Data analyses ............................................................................................................ 46
3.3 Results ........................................................................................................................... 50
3.3.1 Predator behavior ...................................................................................................... 50
3.4 Discussion ..................................................................................................................... 55
Chapter 4. Swimming behavior and capture success in European whitefish (Coregonus
lavaretus) larvae on zooplanktonic prey ....................................................................................... 62
4.1 Introduction ................................................................................................................... 63
4.2 Material and methods .................................................................................................... 64
4.2.1 Experimental fish larvae and prey ............................................................................ 64
4.2.2 Experimental setup.................................................................................................... 65
4.2.3 Experimental procedure ............................................................................................ 65
4.2.4 Determination of swimming paths ............................................................................ 66
4.2.5 Behavioral parameters .............................................................................................. 67
4.2.6 Data analysis ............................................................................................................. 69
4.3 Results ........................................................................................................................... 69
4.3.1 Feeding ethogram and kinematics ............................................................................ 69
4.3.2 Comparison of successful vs. failed events .............................................................. 71
4.4 Discussion ..................................................................................................................... 72
4.4.1 Feeding mechanism .................................................................................................. 72
4.4.2 Feeding kinematics ................................................................................................... 75
4.4.3 Factors governing the capture success ...................................................................... 76
4.4.4 Limitations of the approach and data ........................................................................ 77
Chapter 5. Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive
stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei,
Perciformes) 79
5.1 Introduction ................................................................................................................... 80
5.2 Material and methods .................................................................................................... 81
5.2.1 Experimental copepods ............................................................................................. 81
5.2.2 Experimental fish ...................................................................................................... 82
5.2.3 Observation setup...................................................................................................... 82
5.2.4 Experimental procedure ............................................................................................ 83
5.2.5 Video analyses .......................................................................................................... 83
5.2.6 Statistical analyses .................................................................................................... 85
5.3 Results ........................................................................................................................... 86
5.4 Discussion ..................................................................................................................... 90
5.4.1 Larval predation in darkness ..................................................................................... 90
5.4.2 Differential vulnerability of E. affinis reproductive stages ....................................... 91
Chapter 6. Negative effects of turbulence on the feeding dynamics in European sea bass
(Dicentrarchus labrax) larvae on Artemia sp. nauplii .................................................................. 97
6.1 Introduction ................................................................................................................... 98
6.2 Material and methods .................................................................................................... 99
6.2.1 Experimental device and turbulence generation ....................................................... 99
6.2.2 Velocity measurement .............................................................................................. 99
6.2.3 Turbulence estimation ............................................................................................. 100
6.2.4 Experimental animals.............................................................................................. 100
6.2.5 Experimental procedure .......................................................................................... 101
6.3 Results ......................................................................................................................... 103
6.3.1 Predator behavior .................................................................................................... 103
6.3.2 Experiment 1: Effect of turbulence on the ingestion rates in sea bass .................... 104
6.3.3 Experiment 2: Combined effect of turbulence and exposure duration on the ingestion
rates in sea bass larvae ........................................................................................................ 104
6.4 Discussion ................................................................................................................... 106
6.4.1 Flow properties ....................................................................................................... 106
6.4.2 Effect of turbulence on the ingestion rates in sea bass ........................................... 107
6.4.3 Combined effect of turbulence and exposure duration on the ingestion rates in sea
bass 110
Chapter 7. The effects of turbulence on the feeding in sea bass juveniles on live versus dead
Eurytemora affinis (Copepoda, Calanoida) ................................................................................ 112
7.1 Introduction ................................................................................................................. 113
7.2 Material and methods .................................................................................................. 114
7.2.1 Experimental setup.................................................................................................. 114
7.2.2 Experimental animals.............................................................................................. 114
7.2.3 Experimental procedure .......................................................................................... 116
7.2.4 Data analysis ........................................................................................................... 117
7.3 Results ......................................................................................................................... 117
7.4 Discussion ................................................................................................................... 118
7.4.1 Data analysis ........................................................................................................... 118
7.4.2 Feeding of D. labrax juveniles on live versus dead copepods ................................ 120
7.4.3 Feeding of D. labrax juveniles across turbulence ................................................... 121
Chapter 8. Conclusions and perspectives ............................................................................. 123
8.1 Fish larvae-prey interactions in calm and turbulent environments ............................. 124
8.2 Future research directions ........................................................................................... 127
References .................................................................................................................................. 129
Alcaraz M., E. Saiz and A. Calbet, 2007. Centropages behaviour: Swimming and vertical migration.
Progress in Oceanography, 72: 121–136.
Anneville O., J.C. Molinero, S. Souissi and D. Gerdeaux, 2010. Seasonal and interannual variability of
cladoceran communities in two peri-alpine lakes: uncoupled response to the 2003 heat wave.
Journal of Plankton Research, 32: 913–925.
Anneville O., l. Lainé, S. Benker, A. Ponticelli and D. Gerdeaux, 2007a. Food habits and ontogenetic
changes in the diet of whitefish larvae in lake Annecy. Bulletin Francais de la Pêche et de la
Pisciculture, 387 : 21–33.
Anneville O., J.C. Molinero, S. Souissi, G. Balvay and D. Gerdeaux, 2007b. Long-term changes in the
copepod community of Lake Geneva. Journal of Plankton Research, 29: i49–i59.
Anneville O., V. Berthon, O. Glippa, M.-S. Mahjoub, J.C. Molinero and S. Souissi, In revision. Ontogenetic
dietary changes of whitefish larvae: insights from field and experimental observations.
Environmental Biology of Fishes.
Bacry E., J. Delour and J.-F. Muzy, 2001. Modelling financial time series using multifractal random walks.
Physica A, 299: 84–92.
Bartholme S., L. Samchyshyna, B. Santer and W. Lampert, 2005. Subitaneous eggs of freshwater
copepods pass through fish guts: Survival, hatchability, and potential ecological implications.
Limnology and Oceanography, 50: 923–929.
Bartumeus F., F. Peters, S. Pueyo, C. Marrasé and J. Catalan, 2003. Helical Lévy walks: adjusting search
statistics to resource availability in microzooplankton. Proceedings of the National Academy of
Sciences U.S.A., 100: 12771–12775.
Basilone G., C. Guisande, B. Patti, S. Mazzola, A. Cuttitta, A. Bonanno and A. Kallianiotis, 2004. Linking
habitat conditions and growth in the European anchovy (Engraulis encrasicolus). Fisheries
Research, 68: 9–19.
Baumann H., M.A. Peck, E. Götze and A. Temming, 2007. Declining growth rates in post-larval sprat,
Sprattus sprattus, encountered in coastal waters of the western Baltic Sea: a case of food
limitation during the early juvenile stage? Journal of Fish Biology, 70: 853–866.
Bengston D.A., 2003. Status of marine aquaculture in relation to live prey: past, present and future. In
Støttrup J. G. and L. McEvoy, (ed.), Live feeds in marine aquaculture. Blackwell, United Kingdom,
pp. 1–16.
Blais J.M. and E.J. Maly, 1993. Differential predation by Chaoborus americanus on males and females of
two species of Diaptomus. Canadian Journal of Fisheries and Aquatic Sciences, 50: 410–415.
Bollens S.M. and B.W. Frost, 1991. Ovigerity, selective predation, and variable diel vertical migration in
Euchaeta elongata (Copepoda: Calanoida). Oecologia, 87: 15–161.
Braum E., 1978. Ecological aspects of the survival of fish eggs, embryos and larvae. In: Gerking S.D.
(ed.), Ecology of freshwater fish production, Blackwell Scientific Publications, Oxford, pp. 102–
131.
Browman H.I. and W.J. O’Brien, 1992. Foraging and prey search behaviour of golden shiner
(Notemigonus crysoleucas) larvae. Canadian Journal of Fisheries and Aquatic Sciences, 49:
813–819.
Browman H.I.,1996. Predator-prey interactions in the sea: commentaries on the role of turbulence. Marine
Ecology Progress Series, 139: 301–302.
Browman H.I. and A.B. Skiftesvik, 1996. Effect of turbulence on the predation cycle of fish larvae:
comments on some of the issues. Marine Ecology Progress Series, 139: 309–312
Browman H.I., J.-F. St-Pierre, A.B. Skiftesvik and R.G. Racca. 2003. Behaviour of Atlantic cod (Gadus
morhua) larvae: an attempt to link maternal condition with larval quality. In: Browman H.I. and A.B.
Skiftesvik (ed.), The Big Fish Bang. Proceedings of the 26th Annual Larval Fish Conference. The
Institute of Marine Research, Bergen, Norway. pp. 71–95.
Bundy M.H., T.F Gross, D.J. Coughlin and J.R. Strickler, 1993. Quantifying copepod searching efficiency
using swimming pattern and perceptive ability. Bulletin of Marine Science, 53: 15–28.
Burdick D.S., D.K. Hartline and P.H. Lenz, 2007. Escape strategies in co-occurring calanoid copepods.
Limnology and Oceanography, 52: 2373–2385.
Busch A. and U. Brenning 1992. Studies on the status of Eurytemora affinis (Poppe, 1880) (Copepoda,
Calanoida). Crustaceana, 62: 1–38.
Buskey E.J., C.J. Coulter and S.L. Strom, 1993. Locomotory patterns of microzooplankton: potential
effects on food selectivity of larval fish. Bulletin of Marine Science, 53: 29–43.
Buskey E.J., P.H. Lenz and D.K. Hartline, 2002. Escape behavior of planktonic copepods in response to
hydrodynamic disturbances: high speed video analysis. Marine Ecology Progress Series,
235:135–146.
Buskey E.J. and D.K. Hartline, 2003. High-speed video analysis of the escape responses of the copepod
Acartia tonsa to shadows. Biology Bulletin, 204: 28–37.
Buskey E.J. 2005. Behavioural characteristics of copepods that affect their suitability as food for larval
fishes. In Lee C.-S., P.J. O’Bryen and N.H. Marcus (ed.), Copepods in aquaculture. Blackwell
Publishing, Iowa, pp. 91–106.
Cabral H. and M.J. Costa, 2001. Abundance, feeding ecology and growth of 0-group sea bass,
Dicentrarchus labrax, within the nursery areas of the Tagus estuary. Journal of the Marine
Biological Association of the United Kingdom, 81: 679-682.
Caparroy P., U.H. Thygesen and A.W. Visser, 2000. Modelling the attack success of planktonic predators:
patterns and mechanisms of prey size selectivity. Journal of Plankton Research, 22: 1871–1900.
Castel J. and J. Veiga, 1990. Distribution and retention of the copepod Eurytemora affinis hirundoides in a
turbid estuary. Marine Biology: 107, 119–128.
Chesney E.J., 1989. Estimating the food requirements of striped bass larvae, Morone saxatilis:
importance of food concentration, light, turbulence and turbidity. Marine Ecology Progress Series,
53: 191–200.
Cianelli D., M. Uttieri, J.R. Strickler and E. Zambianchi, 2009. Zooplankton encounters in patchy particle
distributions. Ecological Modelling, 220: 596–604.
Clark D.L., J.M. Leis, A.C. Hay and T. Trnski, 2005. Swimming ontogeny of larvae of four temperate
marine fishes. Marine Ecology Progress Series, 292: 287–300.
Clarke, R.D., E.J. Buskey and K.C. Marsden, 2005. Effects of water motion and prey behavior on
zooplankton capture by two coral reef fishes. Marine Biology, 146: 1145–1155.
Clarke R.D., C.M. Finelli and E.J. Buskey, 2009. Water flow controls distribution and feeding behavior of
two co–occurring coral reef fishes: II. Laboratory experiments. Coral Reefs, 28: 475–488.
Conway V.P., I.R.B. McFadzen and P.R.G. Tranter, 1994. Digestion of copepod eggs by larval turbot
Scophthalmus maximus and egg viability following gut passage. Marine Ecology Progress Series,
106: 303–309.
Costello J.H., J.R. Strickler, C. Marrasé, G. Trager, R. Zeller and A.Y. Freise, 1990. Grazing in a turbulent
environment: behavioral response of a calanoid copepod, Centropages harnatus. Proceedings of
the National Academy of Sciences U.S.A., 87: 1648–1562.
Coughlin D.J., J.R. Strickler and B.S. Anderson, 1992. Swimming and search behaviour in clownfish,
Amphiprion perideraion, larvae. Animal Behaviour, 44: 427–440.
Coughlin D.J., 1993. Prey location by clownfish (Amphiprion perideraion) larvae feeding on rotifers
(Brachionus plicatilis). Journal of Plankton Research, 15: 117–123.
Coughlin D.J., 1994. Suction prey capture by clownfish larvae (Amphiprion perideraion). Copeia, 1: 242–
246.
Cox D.R., 1958. Planning of experiments. Wiley, New York.
Currie W.J.S., Claereboudt M.R. and J.C. Roff, 1998. Gaps and patches in the ocean: a one-dimensional
analysis of plankton distributions. Marine Ecology Progress Series, 171: 15-21.
Cushing D.H., 1990. Plankton production and year–class strength in fish populations: an update of the
match/mismatch hypothesis. Advances in Marine Biology, 26: 249–293.
Dauvin J.-C. and N. Desroy, 2005. The food web in the lower part of the Seine estuary: a synthesis of
existing knowledge. Hydrobiologia, 540: 13-27.
De Robertis A., C. Schell and J.S. Jaffe, 2003. Acoustic observations of the swimming behavior of the
euphausiid Euphausia pacifica Hansen. ICES Journal of Marine Science, 60: 885-898.
Descroix A., M. Harvey, S. Roy and P. Galbraith, 2005. Macrozooplankton community patterns driven by
water circulation in the St. Lawrence marine system, Canada. Marine Ecology Progress Series,
302: 103-11.
Despland E., 2003. Fractal index captures the role of vegetation clumping in locust swarming. Functional
Ecology, 17: 315–322.
Devreker D., S. Souissi and L. Seuront, 2004. Development and mortality of the first naupliar stages of
Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature.
Journal of Experimental Marine Biology and Ecology, 303: 31-46.
Devreker D., 2007. Dynamique de population du copépode Eurytemora affinis dans l’estuaire de la Seine:
approche combinée in situ multi-échelle et expérimentale. PhD thesis, University of Le Havre, Le
Havre.
Devreker D., S. Souissi, J.C. Molinero and F. Nkubito, 2008. Trade-offs of the copepod Eurytemora affinis
in mega-tidal estuaries: insights from high frequency sampling in the Seine estuary. Journal of
Plankton Research, 30: 1329–1342.
Devreker D., S. Souissi, G. Winkler, J. Forget-Leray and F. Leboulenger, 2009. Effects of salinity and
temperature on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine
estuary: a laboratory study. Journal of Experimental Marine Biology and Ecology, 368: 113-123.
Diaz J.P., M. Prie-Granie, M. Kentouri, S. Varsamos and S. Connes, 2003. Development of the lateral line
system in the sea bass. Journal of Fish Biology, 62: 24–40.
Dickmann M., C. Möllmann and R. Voss, 2007. Feeding ecology of Central Baltic sprat Sprattus sprattus
larvae in relation to zooplankton dynamics: implications for survival. Marine Ecology Progress
Series, 342: 277–289.
Dominguez-Dominguez O., S. Nandini and S.S.S. Sarama, 2002. Larval feeding behaviour of the
endangered fish golden bubblebee goodeid, Allotoca dugesi, implications for conservation of an
endangered species. Fisheries Management Ecology, 9: 285-291.
Dowling N.A., S.J. Hall and J.G. Mitchell, 2000 Foraging kinematics of barramundi during early stages of
development. Journal of Fish Biology, 57: 337-353.
Drost R.M. and J.G.M. Van Den Boogaart, 1986. The energetics of feeding strikes in larval carp, Cyprinus
carpio. Journal of Fish Biology, 29: 371-379.
Drost R.M., 1987. Relation between aiming and catch success in larval fishes. Canadian Journal of
Fisheries and Aquatic Sciences, 44: 304-315.
Dur G., S. Souissi, F. Schmitt, S.-H. Cheng and J.-S. Hwang, 2010. The different aspects in motion of the
three reproductive stages of Pseudodiaptomus annandalei (Copepoda, Calanoida). Journal of
Plankton Research, 32: 423-440.
Eldridge M.B., J.A. Whipple and M.J. Bowers, 1982. Bioenergetics and growth of striped bass, Morone
saxatilis embryos and larvae. Fishery Bulletin, 80: 461-474.
Elliot D.T., 2010. Copepod Carcasses, Mortality and Population Dynamics in the Tributaries of the Lower
Chesapeake Bay. PhD thesis, University of Maryland Center for Environmental Science,
Maryland.
Enders E.C., D. Boisclair and A.G. Roy, 2003. The effect of turbulence on the cost of swimming for
juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 60:
1149–1160.
Fiedler P.C., 1983. Fine-scale spatial patterns in the coastal epiplankton off southern California. Journal
of Plankton Research, 5: 865-879.
Fields D.M. and J. Yen, 1997. The escape behavior of marine copepods in response to a quantifiable fluid
mechanical disturbance. Journal of Plankton Research, 19: 1289-1304.
Fiksen Ø. and B.R. MacKenzie, 2002. Process-based models of feeding and prey selection in larval fish.
Marine Ecology Progress Series, 243: 151-164.
Flinkman J., I. Vuorinen and M. Christiansen, 1994. Calanoid copepod eggs survive passage through fish
digestive tracts. ICES Journal of Marine Science, 51: 12-129.
Fortier L. and W.C. Leggett, 1983. Vertical migrations and transport of larval fish in a partially mixed
estuary. Canadian Journal of Fisheries and Aquatic Sciences, 40: 1543-1555.
Franks P.J.S., 2001. Turbulence avoidance: An alternate explanation of turbulence-enhanced ingestion
rates in the field. Limnology and Oceanography, 46: 959–963.
Fuiman L.A. and P.W. Webb, 1988. Ontogeny of routine swimming activity and performance in zebra
danios (Teleostei: Cyprinidae). Animal Behaviour, 36: 250-261.
Galbraith P.S., H.I. Browman, R.G. Racca, A.B. Skiftesvik and J.-F. Saint-Pierre, 2004. Effect of
turbulence on the enregetics of foraging in Atlantic cod Gadus morhua larvae. Marine Ecology
Progress Series, 281: 241-257.
Gallager S.M., H. Yamazaki and C.S. Davis, 2004. Contribution of fine-scale vertical structure and
swimming behavior to formation of plankton layers on Georges Bank. Marine Ecology Progress
Series, 267: 27-43.
Garcia R., F. Moss, A. Nihongi, J.R. Strickler, S. Goller, U. Erdmann, L. Schimansky-Geier and I.M.
Sokolov, 2007. Optimal foraging by zooplankton within patches: The case of Daphnia.
Mathematical Biosciences, 207: 165-188.
Georgalas V., S. Malavasi, P. Franzoi and P. Torricelli, 2007. Swimming activity and feeding behavior of
larval European sea bass (Dicentrarchus labrax L.): Effects of ontogeny and increasing food
density. Aquaculture, 264: 418–427.
Gerdeaux D., 2004. The recent restoration of the whitefish fisheries in Lake Geneva: the roles of stocking,
reoligotrophication, and climate change. Annales Zoologici Fennici, 41: 181-189.
Gerdeaux D., O. Anneville and D. Hefti, 2006. Fishery changes during re-oligotrophication in 11 perialpine
Swiss and French lakes over the past 30 years. Acta Oecologica, 30: 161-167.
Gerritsen J. and J.R. Strickler, 1977. Encounter probabilities and community structure in zooplankton: a
mathematical model. Journal of the Fisheries Research Board of Canada, 34: 73–82.
Gilbert O.M. and E.J. Buskey, 2005. Turbulence decreases the hydrodynamic predator sensing ability of
the calanoid copepod Acartia tonsa. Journal of Plankton Research, 27: 1067-1071.
Govoni J.J., P.B. Ortner, F. Al-Yamani and L.C. Hill, 1986. Selective feeding of spot, Leiostomus
xanthurus, and Atlantic croaker, Micropogonias undulatus, larvae in the northern Gulf of Mexico.
Marine Ecology Progress Series, 28: 175-183.
Guthrie D.M. and W.R.A. Muntz, 1993. Role of vision in fish behaviour. In: Pitcher T.J. (ed.), Behaviour of
Teleost Fishes. Chapman and Hall, London, pp. 89-128.
Hairston N.G. JR, W.E. Walton and K.T. Li, 1983. The causes and consequences of sex-specific mortality
in a freshwater copepod. Limnology and Oceanography, 28: 935-947.
Halley J.M., Hartley S., A.S. Kallimanis, W.E. Kunin, J.J. Lennon and S.P. Sgardelis, 2004. Uses and
abuses of fractal methodology in ecology. Ecology Letters, 7: 254–271.
Haury L.R. and P.H. Wiebe, 1982. Fine-scale multi-species aggregations of oceanic zooplankton. Deep
Sea Research, 29: 915-921.
Haury L.R., H. Yamazaki and E.C. Itsweire, 1990. Effects of turbulent shear flow on zooplankton. Deep-
Sea Research, 37: 447–461.
Heath M.R., 1992. Field investigations of the early life history stages of marine fish. Advances in Marine
Biology, 28: 1–174.
Heath M.R., 1993. The role of escape reactions in determining the size distribution of prey captured by
herring larvae. Environmental Biology Fish, 38: 331-344.
Helminen H., J. Sarvala and J. Karjalainen, 1997. Patterns in vendace recruitment in Lake Pyhäjärvi,
south-west Finland. Journal of Fish Biology, 51: 303-316.
Heuch P.A., M.H. Doall and J. Yen, 2007. Water flow around a fish mimic attracts a parasitic and deters a
planktonic copepod. Journal of Plankton Research, 29: i3-i16.
Hill P.S., A.R.M. Nowell and P.A. Jumars, 1992. Encounter rate by turbulent shear of particles similar in
diameter to the Kolmogorov scale. Journal of Marine Research, 50: 643-668.
Hill P.S., M.T. Burrows and R.N. Hughes, 2005. Adaptive search in juvenile plaice foraging for
aggregated and dispersed prey. Journal fish biology, 61: 1255-1267.
Hillgruber N. and M. Kloppmann, 2000. Vertical distribution and feeding of larval blue whiting in turbulent
waters above Porcupine Bank. Journal of Fish Biology, 57: 1290–1311.
Houde E.D. and R.C. Schekter, 1980. Feeding by marine fish larvae: developmental and functional
responses. Environmental Biology of Fishes, 5: 315-334.
Hughes R.N., M.J. Kaiser, F.A. Mackney and K. Warburton, 1992. Optimizing foraging behavior through
learning. Journal of Fish Biology, 41: 77–91.
Humphries S., 2009. Filter feeders and plankton increase particle encounter rates through flow regime
control. Proceedings of the National Academy of Sciences U.S.A., 106: 7882–7887.
Hunt von Herbing I. and S.M. Gallager, 2000. Foraging behavior in early Atlantic cod larvae (Gadus
morhua) feeding on a protozoan (Balanion sp.) and a copepod nauplius (Pseudodiaptomus sp.).
Marine Biology, 136: 591-602.
Hunt von Herbing I., S.M. Gallager and W. Halteman, 2001. Metabolic costs of pursuit and attack in early
larval Atlantic cod. Marine Ecology Progress Series, 216: 201–212.
Hunt von Herbing I., 2002. Effects of temperature on larval fish swimming performance: the importance of
physics to physiology. Journal of Fish Biology, 61: 865–876.
Hunt von Herbing I. and K. Keating, 2003. Temperature-induced changes in viscosity and its effects on
swimming speed in larval haddock. In: Browman H.I. and A.B. Skiftesvik (ed.), The Big Fish Bang.
Proceedings of the 26th Annual Larval Fish Conference, The Institute of Marine Research,
Bergen, Norway. pp. 23-34.
Hunter J.R., 1981. Feeding, ecology and predation of marine fish larvae. In: Lasker R. (ed.), Marine Fish
Larvae: Morphology, Ecology, and Relation to Fisheries. Washington Sea Grant Program,
University of Washington Press, Seattle, pp. 33–77.
Hurlbert S.H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological
Monographs, 54: 187-211.
Hwang J.-S., 1991. Behavioral responses and their role in predator/prey interactions of a calanoid
copepod. Centropages hamatus, under variable hydrodynamic conditions. PhD thesis, Boston
University, Boston.
Hwang J.-S., J.H. Costello and J.R. Strickler, 1994. Copepod grazing in turbulent flow: elevated foraging
behavior and habituation of escape responses. Journal of Plankton Research, 16: 421-431.
Hwang J.-S. and J.R. Strickler, 1994. Effects of periodic turbulent events upon escape responses of a
calanoid copepod, Centropages hamatus. Bulletin of Plankton Society of Japan, 41: 117-130.
Hwang J.-S. and J.R. Strickler, 2001. Can copepods differentiate prey from predators hydromechanically?
Zoological Studies, 40: 1-6.
Incze L.S., D. Hebert, N. Wolff, N. Oakey and D. Dye, 2001. Changes in copepod distributions associated
with increased turbulence from wind stress. Marine Ecology Progress Series, 213: 229–240.
Irvine J.R. and T.G. Northcote, 1983. Selection by young rainbow trout (Salmo gairdneri) in simulated
stream environments for live and dead prey of different sizes. Canadian journal of fisheries and
aquatic sciences, 40: 1745-1749.
Janssen J., 1981. Searching for zooplankton just outside Snell’s window. Limnology and Oceanography,
26: 1168–1171.
Janssen J., 1992. Comparison of Searching Behavior for Zooplankton in an Obligate Planktivore,
Blueback Herring (Alosa aestivalis) and a Facultative Planktivore, Bluegill (Lepomis
machrochirus). Canadian Journal of Fisheries and Aquatic Sciences, 39: 1649-1654.
Jenkins J.P., 1988. Micro- and fine-scale distribution of microplankton in the feeding environment of larval
flounder. Marine Ecology Progress Series, 43: 233-244.
Jiménez J., 1997. Oceanic turbulence at millimeter scales. Scientia Marina, 61: 47–56.
Jones W.R. and J. Janssen, 1992. Lateral line development and feeding behavior in the mottled sculpin,
Cottus bairdi (Scorpaeniformes: Cottidae). Copeia, 2, 485-492.
Karjalainen J., H. Auvinen, H. Helminen, T.J. Marjomäki, T. Niva, J. Sarvala and M. Viljanen, 2000.
Unpredictability of fish recruitment: interannual variation in young-of-the-year abundance. Journal
of Fish Biology, 56: 837–857.
Kato Y., T. Takebe, S. Masuma, T. Kitagawa and S. Kimura, 2008. Turbulence effect on survival and
feeding of Pacific bluefin tuna Thunnus orientalis larvae, on the basis of a rearing experiment.
Fisheries Science, 74: 48–53.
Kelley D.F., 1988. The importance of estuaries for sea bass, Dicentrarchus labrax (L.), Journal of Fish
Biology, 33: 25–33.
Kendall A.W., E.H. Ahlstrom and H.G. Moser, 1984. Early life history stages of fishes and their characters.
In: Moser H.G., W.J. Richards, D.M. Cohen, M.P. Fahay, A.W. Kendall and S.L.Jr. Richardson,
(ed.), Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists,
Special publication Number 1. pp. 11-12.
Kiørboe T. and B.R. Mackenzie, 1995. Turbulence-enhanced prey encounter rates in larval fish: Effects of
spatial scale, larval behaviour, and size. Journal of Plankton Research, 17: 2319–2331.
Kiørboe T. and E. Saiz, 1995. Planktivorous feeding in calm and turbulent environments, with emphasis
on copepods. Marine Ecology Progress Series,122: 135-145.
Kiørboe T., E. Saiz and A.W. Visser. 1999. Hydrodynamic signal perception in the copepod Acartia tonsa.
Marine Ecology Progress Series 179: 97–111.
Kiørboe T. and A.W. Visser, 1999. Predator and prey perception in copepods due to hydromechanical
signals. Marine Ecology Progress Series, 179: 81-95.
Kiørboe T., 2008. A Mechanistic Approach to Plankton Ecology. Princeton university press, Princeton,
New Jersey.
Kirk J.T.O., 1994a. Light and photosynthesis in aquatic ecosystems, 2nd edition. Cambridge University
Press, Great Britain.
Kirk, J.T.O., 1994b. Spectral distribution of photosynthetically active radiation in some South-eastern
Australian Waters. Australian Journal of Marine and Freshwater Research, 30: 81-91.
Knutsen J.A., 1992. Feeding behaviour of North Sea turbot (Scophthalmus maximus) and Dover sole
(Solea solea) larvae elicited by chemical stimuli. Marine Biology, 113: 543-548.
Kolmogorov A.N., 1941. Dissipation of energy in locally isotropic turbulence. Proceedings of the USSR
Academy of Sciences, 32: 16–18. (in russian)
Kolmogorov A.N., 1991. The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers. Proceedings of the Royal Society of London, Series A: Mathematical and
Physical Sciences, 434: 15–17.
Koutsikopoulos C. and B. le Cann, 1996. Physical and hydrological structures related to the Bay of Biscay
anchovy. In Palomera I. and P. Rubies (ed.), The European anchovy and its environment.
Scientia Marina, 60: 9-19.
Kozlov M.V. and S.H. Hurlbert, 2006. Pseudoreplication, chatter, and the international nature of science:
A response to D. V. Tatarnikov. Journal of Fundamental Biology, 67: 145-152.
Kühn W., M.A. Peck, H.-H. Hinrichsen, U. Daewel, A. Moll, T. Pohlmann, C. Stegert and S. Tamm, 2008.
Defining habitats suitable for larval fish in the German Bight (southern North Sea): An IBM
approach using spatially- and temporally-resolved, size-structured prey fields. Journal of Marine
Systems, 74: 329–342.
Laffaille P., J.-C Lefeuvre, M.-T. Schricke and E. Feunteun, 2001a. Feeding ecology of 0-group sea bass,
Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries, 24: 116-125.
Laffaille P., L. Thieulle, E. Feunteun and J.C. Lefeuvre, 2001b. Composition du peuplement piscicole d'un
petit estuaire anthropisé (Le Couesnon, France). Bulletin Français de la Pêche et de la
Pisciculture, 357/360: 191-208.
Landry F., T.J. Miller and W. C. Legget, 1995. The effects of small-scale turbulence on the ingestion rate
of fathead minnow (Pimephales promelas). Canadian Journal of Fisheries and Aquatic Science,
52: 1714-1719.
Lasker R., 1975. Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll
maximum layers and successful first feeding. Fisheries Bulletin, 73: 453-462.
Lasker R. and J.R. Zweifel. 1978. Growth and survival of first-feeding northern anchovy larvae (Engraulis
mordax) in patches containing different proportions of large and small prey. In: Steele J.H. (ed.),
Spatial pattern in Plankton Communities, Plenum Press, New York. pp. 329-354.
Lasker R., 1981. The role of a stable ocean in larval fish survival and subsequent recruitment.
Washington Sea Grant Program, Seattle, WA
Lazzaro X., 1987. A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and
impacts. Hydrobiologia, 146: 97-167
Legget W. and E. Deblois, 1994. Recruitment in marine fishes: is it regulated by starvation and predation
in the egg and larval stages? Netherlands Journal of Sea Research, 32: 119–134.
Leis J.M., 2007. Behaviour as input for modelling dispersal of fish larvae: behaviour, biogeography,
hydrodynamics, ontogeny, physiology and phylogeny meet hydrography. Marine Ecology
Progress Series, 347: 185–193.
Lewis D.M. and J.T. Pedley, 2000. Planktonic Contact Rates in Homogeneous Isotropic Turbulence:
Theoretical Predictions and Kinematic Simulations. Journal of Theoretical Biology, 205: 377-408.
Lewis D.M. and J.T. Pedley, 2001. The influence of turbulence on plankton predation strategies. Journal
of Theoretical Biology, 210: 347-365.
Lewis D.M., 2003. Planktonic encounter rates in homogeneous isotropic turbulence: the case of predators
with limited fields of sensory perception. Journal of Theoretical Biology, 222: 73–97.
Lewis D.M. and S.I. Bala, 2006. Plankton predation rates in turbulence: a study of the limitations imposed
on a predator with non-spherical field of sensory perception. Journal of Theoretical Biology, 242:
44-61.
Lo W.-T., H.Y. Hsieh, D.C. Liu, L.J. Wu and W.C. Su, 2010. Comparison of larval fish assemblages
between during and after northeasterly monsoon in the waters around Taiwan, western North
Pacific. Journal of Plankton Research, 32: 1079-1095.
Lough R.D. and D.G. Mountain, 1996. Effect of small-scale turbulence on feeding rates of larval cod and
haddock in stratified water on Georges Bank. Deep-Sea Research II, 43: 1745–1722.
Luczynski M., S. Falkowski and T. Kopecki, 1988. Larval development in four coregonid species
(Coregonus albula, C. lavaretus, C. muksumand, C. peled). Finnish Fisheries Research, 9: 61-69.
MacDonald D.G., 2003. Mixing processes and hydraulic control in a highly stratified estuary. PhD thesis,
Massachusetts University of Technology, Massachusetts.
Mackas D.L., H. Sefton, C.B. Miller and A. Raich, 1993. Vertical habitat partitioning by large calanoid
copepods in the oceanic subarctic Pacific during spring. Progress in Oceanography, 32: 259–294.
Mackenzie B.R., T.J. Miller, S. Cyr and W.C. Leggett, 1994. Evidence for a dome-shaped relationship
between turbulence and larval fish ingestion rates. Limnology and Oceanography, 39: 1790–1799.
Mackenzie B.R. and T. Kiørboe, 1995. Encounter rates and swimming behaviour of pause travel and
cruise larval fish predators in calm and turbulent environments. Limnology and Oceanography, 40:
1278–1289.
Mackenzie B.R. and T. Kiørboe, 2000. Larval fish feeding and turbulence: A case for the downside.
Limnology and Oceanography, 45: 1–10.
Mahjoub M.-S., O. Anneville, J.C. Molinero, S. Souissi and J.–S. Hwang, 2008. Feeding mechanism and
capture success of European whitefish (Coregonus lavaretus L.) larvae. Knowledge and
Management of Aquatic Ecosystems, 388: 1-14.
Mani-Ponset L., J.P. Diaz, P. Divanach, M. Kentouri and R. Connes, 1993. Structure de la rétine et
potentialités visuelles susceptibles d'influer sur le comportement trophique du loup (Dicentrarchus
labrax) adulte et en cours de développement. European Aquaculture Society. Special Publication,
18: 359-372.
Mariani P., B.R. MacKenzie, A.W. Visser and V. Botte 2007. Individual-based simulations of larval fish
feeding in turbulent environments. Marine Ecology Progress Series, 347: 155–169.
Marttunen M. and T. Vehanen, 2004. Toward adaptive management: the impacts of different
management strategies on fish stocks and fisheries in a large regulated lake. Environmental
Management, 33: 840–854.
Maxey M.R., 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random
flow fields. Journal of Fluid Mechanics, 174: 441–465.
McDonald J.H., 2009. Handbook of Biological Statistics 2nd edition. Sparky House Publishing, Baltimore,
Maryland.
Megrey B.A. and S. Hinckley, 2001. Effect of turbulence on feeding of larval fishes: a sensitivity analysis
using an individual-based model. ICES Journal of Marine Science, 58: 1015-1029.
Meng L. and J.J. Orsi, 1991. Selective Predation by Larval Striped Bass on Native and Introduced
Copepods. Transactions of the American Fisheries Society, 120: 187-192.
Metaxas A., 2001. Behaviour in flow: perspectives on the distribution and dispersion of meroplanktonic
larvae in the water column. Canadian Journal of Fisheries and Aquatic Science, 58: 86–98.
Michalec F.G., S. Souissi, G. Dur, M.-S. Mahjoub, F.G. Schmitt and J.-S. Hwang, 2010. Kinetical
parameters of Eurytemora affinis (Copepoda, calanoida) swimming paths under different salinity
conditions. Journal of Plankton Research, 32: 805-813.
Milinski M., 1977. Do all members of a swarm suffer the same predation? Zeitschrift fur Tierzuchtung und
Zuchtungsbiologie, 45: 373-388.
Mohammadian M.A., S. Hansson and B.T. De Stasio, 1997. Are marine planktonic invertebrates food
limited? The functional response of Mysis mixta (Crustacea, Mysidacea) in the Baltic Sea, Marine
Ecology Progress Series, 150:113-119.
Molony B.W., 1996. Episodes of starvation are recorded in the otoliths of juvenile Ambassis vachelli
(Chandidae), a tropical estuarine fish. Marine Biology, 125: 439-446.
Montgomery J., G. Carton, R. Voigt, C. Baker and C. Diebel, 2000. Sensory processing of water currents
by fishes. Philosophical Transactions of the Royal Society of London Series B-Biological
Sciences, 355: 1325-1327.
Morales-Ventura J., S Nandini and S.S.S. Sarma, 2004. Functional responses during the early larval
stages of the charal fish Chirostoma riojai (Pices: Atherinidae) fed rotifers and cladocerans.
Journal of Apllied Ichtyology, 20: 417-421.
Morgan C.A., J.R. Cordell and C.A. Simenstad, 1997. Sink or swim? Copepod population maintenance in
the Columbia River estuarine turbidity-maxima region. Marine Biology, 129: 309-317.
Mouny P., J.C. Dauvin, C. Bessineton, B. Elkaim and S. Simon, 1998. Biological components from the
Seine estuary: first results. Hydrobiologia, 373/374: 333-347.
Mouny, P. and J.C. Dauvin, 2002, Environmental control of mesozooplankton community structure in the
Seine estuary (English Channel). Oceanologica Acta, 25: 13–22.
Muelbert, J.H., M.R. Lewis and D.E. Kelley 1994. The importance of small-scale turbulence in the feeding
of herring larvae. Journal of Plankton Research, 16: 927-944.
Mukai Y., H. Yoshikawa and H. Kobayashi, 1994. The relationship between the length of the cupulae of
free neuromasts and feeding ability in larvae of the willow shiner Gnathopagon elongatus
caerulescens (Teleostei, Cyprinidae). Journal of Experimental Biology, 197: 399-403.
Müller R., 1992. Trophic state and its implications for natural reproduction of salmonid fish. Hydrobiologia,
243/244: 261-268.
Munk P. and T. Kiørboe, 1985. Feeding behavior and swimming activity of larval herring Clupea harengus
in relation to density of copepod nauplii. Marine Ecology Progress Series, 24: 15–22.
Munk P., 1992. Foraging behaviour and prey size spectra of larval herring Clupea harengus. Marine
Ecology Progress Series, 80: 149–158.
Munk P., 1995. Foraging behaviour of larval cod (Gadus morhua) influenced by prey density and hunger.
Marine Biology, 122: 205-212.
Munk P., 2007. Cross-frontal variation in growth rate and prey availability of larval North Sea cod Gadus
morhua. Marine Ecology Progress Series, 334: 225-235.
Nassal B., W. Burghard and G. Maier, 1998. Predation by juvenile roach on the calanoid copepod
Eudiaptomus gracilis and the cyclopoid copepod Cyclops vicinus: a laboratory investigation with
mixed and single prey. Aquatic Ecology, 32: 335-340.
Nelson A.L. and B.C. Coull, 1989. Selection of meiobenthic prey by juvenile spot (Pisces): an
experimental study. Marine Ecology Progress Series, 53: 51-57.
Nihongi A, S.B. Lovern and J.R. Strickler, 2004. Mate-searching behaviors in the freshwater calanoid
copepod Leptodiaptomus ashlandi. Journal of Marine Systems, 49: 65–74.
Normant F. and C. Tricot, 1991. Method for evaluating the fractal dimension of curves using convex hulls.
Physical Review A, 43: 6518–6525.
O’Brien W.J., 1987. Planktivory by freshwater fish: thrust and parry in the pelagia. In: Kerfoot W.C. and A.
Sih (ed.), Predation. Direct and indirect impacts on aquatic communities. University press of New
England, Hanover, pp. 3-16.
Oksanen L. 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos, 94: 27-38.
Oshima M., Y. Kato, R. Masuda, S. Kimura and Y. Yamashita, 2009. Effect of turbulence on feeding
intensity and survival of Japanese flounder Paralichthys olivaceus pelagic larvae. Journal of Fish
Biology, 75: 1639–1647.
Owen R.W., 1989. Microscale and finescale variations of small plankton in coastal and pelagic
environments. Journal of Marine Research, 47: 197-240.
Pascual M., F.A. Ascioti and H. Caswell, 1995. Intermittency in the plankton: a multifractal analysis of
zooplankton biomass variability. Journal of Plankton Research, 17: 1209–1232.
Pasternak A.F., V.N. Mikheev and J. Wanzenböck, 2006. How plankton copepods avoid fish predation:
from individual responses to variation of the life cycle. Journal of Ichtyology, 46: s220-s226.
Paul A.J. and J.M. Paul, 1996. Microscale abundance of copepod nauplii prey of larval fishes in glaciated
fiord measured with a 50-mL sampler. Alaska Fishery Research Bulletin, 3: 54-58.
Pauly D. and V. Christensen, 1995. Primary production required to sustain global fisheries. Nature, 374:
255-257.
Pavlov D.S., A.I. Lupandin and M.A. Skorobogatov, 2000. The effects of flow turbulence on the behavior
and distribution of fish. Journal of Ichtyology, 40: s232-s261.
Peck M.A., L.J. Buckley and D.A. Bengtson, 2006. Effects of temperature and body size on the swimming
velocity of larval and juvenile Atlantic cod (Gadus morhua): implications for individual-based
modeling. Environmental Biology of Fishes, 75: 419-429.
Peck M.A. and U. Daewel, 2007. Physiologically-based limits to food consumption and individual-based
modelling of foraging and growth of larval fish. Marine Ecology Progress Series, 347: 171–183.
Pécseli H.L., J.K. Trulsen and Ø. Fiksen, 2010. Predator–prey encounter rates in turbulent water:
Analytical models and numerical tests. Progress in Oceanography, 85:171-179.
Pepin P., 2004. Early life history studies of prey–predator interactions: quantifying the stochastic
individual responses to environmental variability. Canadian Journal of Fisheries and Aquatic
Sciences, 61: 659–671.
Peterson W.T. and S.J. Ausubel, 1984. Diets and selective feeding by larvae of Atlantic mackerel
Scomber scombrus on zooplankton. Marine Ecology Progress Series, 17: 65-75.
Pitchford J.W., A. James and J.A. Brindley, 2003. Optimal foraging in patchy turbulent environments.
Marine Ecology Progress Series, 256: 99–110.
Pope S.B., 2000. Turbulent flows. Cambridge University Press, United Kingdom.
Price H.J., 1989. Swimming behavior of krill in response to algal patches: a mesocosm study. Limnology
and Oceanography, 34: 649-659.
Rao T.R., 2003. Ecological and ethological perspectives in larval fish feeding. Journal of Applied
Aquaculture, 13: 145–178.
Redden A.M. and G.R. Daborn, 1991. Viability of subitaneous copepod eggs following fish predation on
egg-carrying calanoids. Marine Ecology Progress Series, 77: 307-310.
Reiss C., A. Anis, C. Taggart, J. Dower and B. Ruddick, 2002. Relationships among vertically structured
in situ measures of turbulence, larval fish, their feeding success, and copepods on Western Bank,
Scotian Shelf, Fisheries Oceanography, 11: 156–17.
Robinson H.E., C.M. Finelli and E.J. Buskey, 2007. The turbulent life of copepods: effects of water flow
over a coral reef on their ability to detect and evade predators. Marine Ecology Progress Series,
349: 171-181.
Ronzani Cerqueira V., 1986. L’élevage larvaire intensif du loup Dicentrarchus labrax Influence de la
lumière, de la densité en proies et de la température sur l’aluminium, sur le transit digestif et sur
les performances zootechniques. PhD thesis, University of Aix-Marseille II, Marseille.
Rothschild B.J. and T.R. Osborn, 1988. Small-scale turbulence and plankton contact rates. Journal of
Plankton Research, 10: 465–474.
Ruzicka J.J. and S.M. Gallager, 2006. The importance of the cost of swimming to the foraging behavior
and ecology of larval cod (Gadus morhua) on Georges Bank. Deep-Sea Research II, 53: 2708–
2734.
Saint-Jean L. and M. Pagano, 1995. Egg mortality through predation in egg-carrying zooplankters.
Studies on Heterobranchus longifilis larvae fed on copepods, cladocerans and rotifers. Journal of
Plankton Research, 17: 1501-1512.
Saiz E. and M. Alcaraz, 1991. Effects of small-scale turbulence on development time and growth of
Acartia grani (Copepoda: Calanoida). Journal of Plankton Research, 13: 873-883.
Saiz E., M. Alcaraz and G.A .Paffenhofer, 1992. Effects of small scale turbulence on feeding rate and
gross-growth efficlency of three Acartia species (Copepoda. Calanoida). Journal of Plankton
Research, 14: 1085-1097.
Saiz E., A. Calbet and E. Broglio, 2003. Effects of small-scale turbulence on copepods: The case of
Oithona davisae. Limnology and Oceanography, 48: 1304–1311.
Sánchez-Vázquez F.J., S. Zamora and J.A. Madrid, 1995. Light-dark and food restriction cycles in sea
bass: effect of conflicting zeitgebers on demand-feeding rhythms. Physiology and Behavior, 58:
705-714.
Sandstrom O., 1980. Selective feeding by Baltic herring. Hydrobiologia, 69:199-207.
Sarma S.S.S., J. Amador Lopez-Romulo and S. Nandini, 2003. Larval feeding behaviour of blind fish
Astyanax fasciatus (Characidae), black tetra Gymnocorymbus ternetzi (Characidae) and angel
fish Pterophyllum scalare (Cichlidae) fed zooplankton. Hydrobiologia, 510: 207–216.
Schmitt F.G. and L. Seuront, 2001. Multifractal random walk in copepod behavior. Physica A, 301: 375-
396.
Schmitt F.G. and L. Seuront, 2002. Diffusion anormale multifractale dans le comportement natatoire
d’organismes marins. In : Pomeau Y. and A. Ribotta (ed.), Rencontre du Non-linéaire. Nonlinéaire
Publications, Paris, pp. 237-242.
Schmitt F.G., L. Seuront, J.-S. Hwang, S. Souissi and L.-C. Tseng, 2006. Scaling of swimming sequences
in copepod behavior: Data analysis and simulation, Physica A, 364: 287–296.
Schmitt F.G. and L. Seuront, 2008. Intermittent turbulence and copepod dynamics: increase of contact
rates through preferential concentration. Journal of Marine Systems, 70: 263-272.
Seuront L., F. Schmitt, Y. Lagadeuc, D. Schertzer and S. Lovejoy, 1999. Multifractal analysis as a tool to
characterize multiscale inhomogeneous patterns. Example of phytoplankton distribution in
turbulent coastal waters. Journal of Plankton Research, 21: 877-922.
Seuront L. and Y. Lagadeuc, 2001. Multiscale patchiness of the calanoid copepod Temora longicornis in
a turbulent sea. Journal of Plankton Research, 23: 1137-1145.
Seuront L., H. Yamazaki and S. Souissi, 2004a. Hydrodynamic Disturbance and Zooplankton Swimming
Behavior. Zoological Studies, 43: 376-387.
Seuront L., M. Brewer and J.R. Strickler, 2004b. Quantifying zooplankton swimming behavior: the
question of scale. In: Seuront L. and P.G. Strutton (ed.), Handbook of scaling methods in aquatic
ecology: measurement, analysis, simulation. CRC Press, Boca Raton, Florida. pp. 333–359.
Sims D.W., E.J. Southall, N.E. Humphries, G.C. Hays, C.J. A. Bradshaw, J.W. Pitchford, A.James, M.Z.
Ahmed, A.S. Brierley, M.A. Hindell, D. Morritt, M.K. Musyl, D. Righton, E.L.C. Shepard, V.J. Wearmouth, R.P. Wilson, M.J. Witt and J.D. Metcalfe, 2008. Scaling laws of marine predator search behavior. Nature, 451: 1098-1102.
Sinclair M., 1988. Marine populations: An essay on population regulation and speciation. Washington Sea
Grant Program, University of Washington Press, Seattle and London.
Sirois P. and J.J. Dodson, 2000. Critical periods and growth-dependent survival of larvae of an estuarine
fish, the rainbow smelt Osmerus mordax. Marine Ecology Progress Series, 203: 233-245.
Souissi A., S. Souissi, D. Devreker and J.-S. Hwang, 2010. Occurrence of intersexuality in a laboratory
culture of the copepod Eurytemora affinis from the Seine estuary (France). Marine Biology, 157:
851-861.
Squires K.D. and J.K. Eaton, 1991. Preferential concentration of particles by turbulence. Physics of Fluids,
3: 1169–1178.
Stephens D.W. and Krebs J.R., 1986. Foraging theory. Princeton University Press, Princeton, New Jersey.
Strickler J.R., 1982. Calanoid copepods, feeding currents, and the role of gravity. Science, 218: 158-160.
Strickler J.R., A.J. Udvadia, J. Marino, N. Radadabgh, J. Ziarek and A. Nihongi, 2005. Visibility as a factor
in the copepod-planktivorous fish relationship. Scientia Marina, 69: 111-124.
Sullivan B.K., E. Buskey, D.C. Miller and P.J. Ritacco, 1983. Effects of copper and cadmium on growth,
swimming and predator avoidance in Eurytemora affinis (Copepoda). Marine Biology, 77: 299-
306.
Sundby S. and P. Fossum, 1990. Feeding conditions of Arcto-Norwegian cod larvae compared to the
Rothschild-Osborn theory on small-scale turbulence and plankton contact rates. Journal of
Plankton Research, 12: 1153-1162.
Svensson J.E., 1992. The influence of visibility and escape ability on sex-specific susceptibility to fish
predation in Eudiaptomus gracilis (Copepoda, Crustacea). Hydrobiologia, 234: 143-150.
Svensson J.E., 1995. Predation risk increases with clutch size in a copepod. Functional Ecology, 9: 774-
777.
Svensson J.E., 1996. Clutch detachment in a copepod after capture by a predator. Journal of Plankton
Research, 18: 1369-1374.
Svensson J.E., 1997a. Chaoborus predation and sex-specific mortality in a copepod. Limnology and
Oceanography, 42: 572–577.
Svensson J.E., 1997b. Fish predation on Eudiaptomus gracilis in relation to clutch size, body size, and
sex: a field experiment. Hydrobiologia, 344: 155–161.
Svensen C. and T. Kiørboe, 2000. Remote prey detection in Oithona similis: hydromechanical versus
chemical cues. Journal of Plankton Research, 22: 1155–1166.
Tanaka Y., Y. Mukai, K. Takii and H. Kumai, 1991. Chemoreception and vertical movement in planktonic
yolk-sac larvae of red sea bream Pagrus major. Journal of Applied Ichthyology, 7: 129-135.
Tang K.W., C.S. Freund and C.L. Schweitzer. 2006. Occurrence of copepod carcasses in the lower
Chesapeake Bay and their decomposition by ambient microbes. Estuarine Coastal and Shelf
Science, 68:499–508.
Tennekes H. and J. Lumley, 1972. A First Course in Turbulence. MIT Press, Cambridge, Massachusetts.
Teixeira M.A.C. and S.E. Belcher, 2000. Dissipation of shear-free turbulence near boundaries. Journal of
Fluid Mechanics, 422:167-191
Thetmeyer H. and U. Kils, 1995. To see and not to be seen: the visibility of predator and prey with respect
to feeding behaviour. Marine Ecology Progress Series, 126: 1–8.
Tiselius P. and P.R. Jonsson, 1990. Foraging behaviour of six calanoid copepods: observations and
hydrodynamic analysis. Marine Ecology Progress Series, 66: 23-33.
Tiselius P., 1992. Behavior of Acartia tonsa in patchy food environments. Limnology and Oceanography,
37: 1640-1651.
Tiselius P., P.R. Jonsson, S. Kaartvedt, E.M. Olsen and T. Jørstad, 1997. Effects of copepod foraging
behavior on predation risk: An experimental study of the predatory copepod Pareuchaeta
norvegica feeding on Acartia clausi and A. tonsa (Copepoda). Limnology and Oceanography, 42:
164-170.
Titelman J, 2001. Swimming and escape behavior of copepod nauplii: implications for predator-prey
interactions among copepods. Marine Ecology Progress Series, 213: 203–213.
Titelman J. and T. Kiørboe, 2003. Motility of copepod nauplii and implications for food encounter. Marine
Ecology Progress Series, 247: 123–135.
Trager G., Y. Achituv and A. Genin, 1994. Effects of prey escape ability, flow speed, and predator feeding
mode on zooplankton capture by barnacles. Marine Biology, 120: 251-259.
Trevethan M., H. Chanson and M. Takeuchi, 2007, Continuous high-frequency turbulence and suspended
sediment concentration measurements in an upper estuary, Estuarine, Coastal and Shelf Science,
73: 341-350.
Turchin P., 1996. Fractal analyses of animal movement: a critique. Ecology, 77: 2086-2090.
Utne-Palm A.C. and J.E. Stiansen, 2002. Effect of larval ontogeny, turbulence and light on prey attack
rate and swimming activity in herring larvae. Journal of Experimental Marine Biology and Ecology,
268: 147-170.
Utne-Palm A.C., 2004. Effects of larvae ontogeny, turbidity, and turbulence on prey attack rate and
swimming activity of Atlantic herring larvae. Journal of Experimental Marine Biology and Ecology
310: 147-161.
Uttieri M., A. Nihongi, M.G. Mazzocchi, J.R. Strickler and E. Zambianchi, 2007a. Pre-copulatory
swimming behavior of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach.
Journal of Plankton Research, 29: i17-i26.
Uttieri M., D. Cianelli, J.R. Strickler and E. Zambianchi, 2007b. On the relationship between fractal
dimension and encounters in three-dimensional trajectories. Journal of Theoretical Biology, 247:
480-491.
Varsamos S, J.P. Diaz, G. Charmantier, G. Flik, C. Blasco and R. Connes, 2002. Branchial chloride cells
in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated
seawater. Journal of Experimental Zoology, 293: 12-26.
Viitasalo M., T. Kiørboe, J. Flinkman, L.W. Pedersen and A.W. Visser, 1998. Predation vulnerability of
planktonic copepods: consequences of predator foraging strategies and prey sensory abilities.
Marine Ecology Progress Series, 175: 129-142.
Visser A.W., 2001. Hydromechanical signals in the plankton. Marine Ecology Progress Series, 222: 1-24.
Visser A.W. and T. Kiørboe, 2006. Plankton motility patterns and encounter rates. Oecologia, 148: 538–
546.
Visser A.W., 2007. Motility of zooplankton: fitness, foraging and predation. Journal of Plankton Research,
29: 447–461.
Vuorinen I, M. Rajasilta and J. Salo, 1983. Selective predation and habitat shift in a copepod species -
support for the predation hypothesis. Oecologia, 59: 62-64.
Wagget R.G. and E.J. Buskey, 2007. Copepod escape behavior in non-turbulent and turbulent
hydrodynamic regimes. Marine Ecology Progress Series, 334: 193–198.
Wang L.P., A.S. Wexler and Y. Zhou, 2000. Statistical mechanical description and modelling of turbulenct
collision of inertial particles. Journal of Fluid Mechanics, 415: 117–153.
Wanzenböck J., 1992. Ontogeny of prey attack behavior in larvae and juveniles of three european
cyprinids. Environmental Biology of Fishes, 33: 23-32.
Winfield I.J. and C.R. Townsend, 1983. The cost of copepod reproduction: increased susceptibility to fish
predation. Oecologia, 60: 406-411.
Wright D.I. and W.J. O’Brien, 1982 Differential location of Chaoborus larvae and Daphnia by fish: The
importance of motion and visible size. American Midland Naturalist, 108: 68-73.
Yen J. and J.R. Strickler, 1996. Advertisement and concealment in the plankton: What makes a copepod
hydrodynamically conspicuous? Invertebrate Biology, 115: 191-205.
Yen J., K.D. Rasberry and D.R. Webster, 2008. Quantifying copepod kinematics in a laboratory
turbulence apparatus. Journal of Marine Systems, 69: 283-294.
Young K.V., J.F. Dower and P. Pepin, 2009. A hierarchical analysis of the spatial distribution of larval fish
prey. Journal of Plankton Research, 31: 687‐700.
Young K.V., P. Pepin and J.F. Dower, 2010. Interannual variability in feeding rate and niche breadth of
radiated shanny (Ulvaria subbifurcata) larvae from coastal Newfoundland. Journal of Plankton
Research, 32: 815–827.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔