跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/25 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴國維
研究生(外文):Kuo-Wei Yen
論文名稱:以GIS建立中西太平洋黃鰭鮪棲地適合度經驗模式
論文名稱(外文):Establish GIS-based empirical model of habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean
指導教授:呂學榮
指導教授(外文):Hsueh-Jung Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:84
中文關鍵詞:地理資訊系統棲地適合度指數鰹鮪圍網遙感探測
外文關鍵詞:Geographic Information Systemhabitat suitability indexpurse seineremote sensing
相關次數:
  • 被引用被引用:11
  • 點閱點閱:474
  • 評分評分:
  • 下載下載:123
  • 收藏至我的研究室書目清單書目收藏:2
以經驗模式之分析方法探討物種的棲地適合度指數(HSI),已經廣泛應用於探討多種動物棲地之優劣,但鮮少應用於大洋上高度洄游的物種鮪魚上。本研究嘗試以地理資訊系統(GIS)整合2003至2007年我國鰹鮪圍網漁獲資料與衛星遙測之海表環境參數,包括海水表面溫度(SST)、海水表面葉綠素濃度(SSC)、海水表面高度(SSH)及海水表面鹽度(SSS),分析中西部太平洋黃鰭鮪的棲地適合度。利用研究期間所有黃鰭鮪素群漁獲位置的各個環境參數值出現之頻度,轉換個別之適合度指數(SI),再計算3種不同HSI之經驗模式,最後利用泛線性模式篩選出最佳的經驗模式,並分析研究區域之HSI變動,主要結果如下:
(一) 黃鰭鮪偏好水域的SST值介於27.2~32.5 ℃、SSC值介於0.02-0.18 mg/m3、SSH值介於1.51~2.23 m、SSS值介於34.22-35.25 psu。
(二) 研究區域之黃鰭鮪HSI最佳經驗模式算法為,將SST、SSC、SSH及SSS轉換成SI後取四者之算術平均數,其預測黃鰭鮪的準確率高達71.97%。
(三) 研究區域之HSI每年3~4月開始上昇,範圍擴大,高HSI水域向東延伸,11月至隔年2月快速下降,HSI變動與黃鰭鮪之漁獲量增減及CPUE分佈移動具有一致性。
本研究以四種常用的遙測表水文資料推估HSI,證實可作為黃鰭鮪大範圍棲地適合度變動的指標,未來應可直接應用於衡量氣候變遷衝擊下適合度的改變。但若欲作為漁場搜尋層次的指標,則因遙測資料之時間解析度限制,以及深層水文之影響未列入考量,仍需有諸多待努力之處。

Empirical Habitat Suitability index (HSI) has been widely used to examine the quality of terrestrial animal, but rarely used in highly migratory fish like tuna. In this study, we used GIS technique to establish empirical models of HSI for yellowfin tuna (YFT) in the Western and Central Pacific Ocean (WCPO). Daily catch data from Taiwanese purse seiner fishery during 2003-2007 were aggregated monthly into 1 by 1 degree and then conduct data match process to obtain monthly average values for the multi-environmental factors, including sea surface temperature (SST), chlorophyll-a (SSC), height (SSH) and salinity (SSS). According to the frequency distribution of each factor on which YFT were caught, we transformed the values of the 4 factors into suitability index (SI) ranged from low to high (0-100%). These SI values were then combined into different empirical HSI models and the optimum one were selected by General Linear model. With the HSI, we have the major results of the analysis are as follows:

1. The optimum ranges of SST, SSC, SSH and SSS for YFT are 27.2~32.5 ℃, 0.02-0.18 mg/m3, 1.51~2.23 m and 34.22-35.25psu.
2. The optimum empirical HSI for TFT’s in the study area is converting the for SI (SST, SSH, SSC and SSS) by arithmetic mean model, by which the correct prediction rate is 71.97%.
3. The HSI began to increase and expand eastwards in March to April and rapid declined in November to next February in the study area. There was an agreement between the average HSI and total YFT catch. Also the high HSI area synchronized with the displacement of CPUE.

In this study, we used 4 kinds of surface variables derived from satellite to develop HSI for YFT in the WCPO. The HSI has been proved to a valid index for YFT habitat suitability in large-scale ocean and should be useful to measure the overall habitat able trend for YFT under future climate change in the region. However, the HSI is still unable to be used for fishing ground search due to the limitation of remote sensing data in temporal scale and the lack of subsurface information. There are more effort need to be further inserted for a more applicable HSI in operational level.

摘要 I
Abstract III
表目錄 VI
圖目錄 VII
壹、前言 1
貳、材料與方法 8
一、資料來源 8
二、漁獲資料與遙測資訊之整合 9
三、四種環境參數的SI值推算 10
四、HSI經驗模式 12
五、黃鰭鮪最適合HSI模式選擇 12
六、HSI空間分布圖繪製 14
七、漁場重心之計算 15
參、結果 16
一、黃鰭鮪的水文環境偏好範圍 16
二、HSI經驗模式選擇 17
三、HSI與CPUE分佈驗證 18
四、中西太平洋HSI經度分布變化 20
肆、討論與結論 22
一、中西太平洋之HSI變動 22
二、影響HSI估計的因素 24
三、以HSI作為漁場搜尋指標 28
四、結論與展望 32
參考文獻 34

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716-723.
Allain V. (2004). Diet of yellowfin tuna in different areas of the western and central Pacific Ocean. In 17th Meeting of the Standing Committee on Tuna and Billfish. Majuro, Marshall Islands. 9–18 August. 1-20.
Altman, P. L. and D. S. Dittmer (1962). Growth, including reproduction and morphological development. In Federation of American Societies for Experimental Biology. Washington, U.S.A., p.608.
Barnes, T. K., A. K. Volety, K. Chartier, F. J. Mazzotti and L. Pearlstine (2007). A habitat suitability index model for the eastern oyster (Crassostrea virginica), a tool for restoration of the Caloosahatchee Estuary, Florida. Journal of Shellfish Research, 26(4): 949-959.
Brooks, R. P. (1997). Improving habitat suitability index models. Wildlife Society Bulletin, 25(1): 163-167.
Chen, X. J., G. Li, B. Feng and S. Q. Tian (2009). Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. Journal of Oceanography, 65(1): 93-102.
Chen, X. J., S. Q. Tian, Y. Chen and B. L. Liu (2010). A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fishery Bulletin, 108(1): 1-14.
Cheung, W. W. L., V. W. Y. Lam, J. L. Sarmiento, K. Kearney, R. Watson, D. Zeller and D. Pauly (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1): 24-35.
Cole, C. A. and R. L. Smith (1983). Habitat suitability indices for monitoring wildlife populations-evaluation. Transactions North American Wildlife and natural Resources Conferences, 48: 367-375.
Collette, B. B. and C. E. Nauen (1983). An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fisheries Synopsis, 123(2): p.137.
Dagorn, L., K. N. Holland, J. P. Hallier, M. Taquet, G. Moreno, G. Sancho, D. G. Itano, R. Aumeeruddy, C. Girard, J. Million and A. Fonteneau (2006). Deep diving behavior observed in yellowfin tuna (Thunnus albacares). Aquatic Living Resources, 19(1): 85-88.
Daw, T., W. N. Adger and K. Brown (2009). Climate change and capture fisheries: potential impacts, adaptation and mitigation. FAO Fisheries and Aquaculture Technical Paper, 530: 107-150.
De Anda-Montañez, J. A., A. Amador-Buenrostro, S. Martínez-Aguilar and A. Muhlia-Almazán (2004). Spatial analysis of yellowfin tuna (Thunnus albacares) catch rate and its relation to El Niño and La Niña events in the eastern tropical Pacific. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 51(6-9): 575-586.
Dussault, C., R. Courtois and J. P. Ouellet (2006). A habitat suitability index model to assess moose habitat selection at multiple spatial scales. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36(5): 1097-1107.
FAO (2009). State of the World Fisheries and Aquaculture 2008. Fisheries and Aquaculture Department, Rome, 11-12.
Fleming, K. K., K. A. Didier, B. R. Miranda and W. F. Porter (2004). Sensitivity of a white-tailed deer habitat-suitability index model to error in satellite land-cover data: implications for wildlife habitat-suitability studies. Wildlife Society Bulletin, 32(1): 158-168.
Fulgione, D., V. Maselli, G. Pavarese, D. Rippa and R. K. Rastogi (2009). Landscape fragmentation and habitat suitability in endangered Italian hare (Lepus corsicanus) and European hare (Lepus europaeus) populations. European Journal of Wildlife Research, 55(4): 385-396.
Grebenkov, A., A. Lukashevich, I. Linkov and L. Kapustka (2006). A habitat suitability evaluation technique and its application to environmental risk assessment. Detection and Disposal of Improvised Explosives, Springer Netherlands: 191-201.
Gupta, H. K. (2005). Oceanology. Universities Press Private Limited, India, p.222.
Hampton, J. and D. A. Fournier (2001). A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Marine and Freshwater Research, 52(7): 937-963.
Hampton , J. (2002). Stock assessment of yellowfin tuna in western and central pacific ocean. In 15th meeting of the standing committee on tuna and billfish. Noumea, New Caledonia, p.20.
Hess, G. R. and J. M. Bay (2000). A regional assessment of windbreak habitat suitability. Environmental Monitoring and Assessment, 61(2): 237-254.
IGFA (2001). Database of IGFA angling records until 2001. IGFA, Fort Lauderdale, U.S.A.
Jenkins, R. E. (1978). Heritage classification: the element of ecological diversity. Nature Conservancy News, 28(24-25): , p.30.
Korsmeyer, K. E., N. C. Lai, R. E. Shadwick and J. B. Graham (1997). Oxygen transport and cardiovascular responses to exercise in the yellowfin tuna Thunnus albacares. Journal of Experimental Biology, 200(14): 1987-1997.
Langley, A., K. Briand, D. S. Kirby and R. Murtugudde (2009). Influence of oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences, 66(9): 1462-1477.
Lauver, C. L. and W. H. Busby (2002). Testing a GIS model of habitat suitability for a declining grassland bird. Environmental Management, 30(1): 88-97.
Lawson, T. A. (2008). TUNA FISHERY YEARBOOK 2007: Western and Central Pacific Fisheries Commission. Noumea, New Caledonia, p.138.
Lee, P. F., I. C. Chen and W. N. Tseng (1999). Distribution Patterns of Three Dominant Tuna Species in the Indian Ocean.In 19th International ERSI Users Conference, San Diego: CA, U.S.A.
Lehodey, P., M. Bertignac, J. Hampton, A. Lewis and J. Picaut (1997). El Niño Southern Oscillation and tuna in the western Pacific. Nature, 389: 715-718.
Liu, Q. Y., Y. L. Jia, P. H. Liu, Q. Wang and P. C. Chu (2001). Seasonal and intraseasonal thermocline variability in the Central South China Sea. [Article]. Geophysical Research Letters, 28(23): 4467-4470.
Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15: 661-675.
McQuarrie, A. D. and C. Tsai (1998). Regression and Time Series Model Selection. In World Scientific, Singapore, 24-30
Meng, X., Z. Ye and Y. Wang (2007). Review on fishery and biology of yellow tuna. South china fisherues science, 3(4): 74-80.
Mohri, M. and T. Nishida (2000). Consideration on distribution of adult yellowfin tuna (Thunnus albacares) in the Indian Ocean based on Japanese tuna longline fisheries and survey information. IOTC Proceedings, 3: 276–282.
Mouton, A. M., A. P. Dedecker, S. Lek and P. L. M. Goethals (2010). Selecting Variables for Habitat Suitability of Asellus (Crustacea, Isopoda) by Applying Input Variable Contribution Methods to Artificial Neural Network Models. Environmental Modeling & Assessment, 15(1): 65-79.
Roloff, G. J. and B. J. Kernohan (1999). Evaluating reliability of habitat suitability index models. Wildlife Society Bulletin, 27(4): 973-985.
Romena, N. A. (2002). Factors affecting distribution of adult yellowfin tuna (Thunnus albacares) and its reproductive ecology in the Indian Ocean based on Japanese tuna longline fisheries and survey information. IOTC Proceedings, 4: 336-389.
Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6: 461-464.
Song, L. M., Y. Zhang, L. X. Xu, W. X. Jiang and J. Q. Wang (2008). Environmental preferences of longlining for yellowfin tuna (Thunnus albacares) in the tropical high seas of the Indian Ocean. Fisheries Oceanography, 17(4): 239-253.
Sumich, J. L. and G. H. Dudley (2009). Laboratory and Field Investigations in Marine Life, Ninth edition. In Marine Biology. Canada, 9-13.
Tian, S. Q., X. J. Chen, Y. Chen, L. X. Xu and X. J. Dai (2009). Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fisheries Research, 95(2-3): 181-188.
Tirpak, J. M., D. T. Jones-Farrand, F. R. Thompson, D. J. Twedt, C. K. Baxter, J. A. Fitzgerald and W. B. Uihlein (2009). Assessing Ecoregional-Scale Habitat Suitability Index Models for Priority Landbirds. Journal of Wildlife Management, 73(8): 1307-1315.
Ward, R. D., N. G. Elliott, B. H. Innes, A. J. Smolenski and P. M. Grewe (1997). Global population structure of yellowfin tuna, Thunnus albacares, inferred from allozyme and mitochondrial DNA variation. Fishery Bulletin, 95(3): 566-575.
Zagaglia, C. R., J. A. Lorenzzetti and J. L. Stech (2004). Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing of Environment, 93(1-2): 267-281.
Zainuddin, M., K. Saitoh and S. I. Saitoh (2008). Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fisheries Oceanography, 17(2): 61-73.
Zeilhofer, P., P. S. A. Neto, W. Y. Maja and D. A. Vecchiato (2009). A web-based, component-oriented application for spatial modelling of habitat suitability of mosquito vectors. International Journal of Digital Earth, 2(4): 327-342.
王駿穠、馮豐隆 (2002). 棲地適宜度指標模式。台灣林業,72-75。
周耀烋、蘇偉成 (2002). 台灣漁具漁法。行政院農業委員會漁業署105pp。
黃易德 (2001). 中西太平洋正鰹資源時空分佈特性之研究。國立台灣海洋大學漁業科學系碩士論文,83pp。
黃炫璋 (2009). 台灣東北部海域鎖管漁場之適合度分析。國立台灣海洋大學環境生物與漁業科學系碩士論文,60pp。
謝佳樺 (2009). 利用遙測及漁獲資料偵測中西太平洋正鰹分佈熱區。國立台灣海洋大學環境生物與漁業科學系碩士論文,77pp。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top