(3.238.96.184) 您好!臺灣時間:2021/05/08 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭啟佑
研究生(外文):CI-YOU Jheng
論文名稱:三維矩形槽雙面驅動穴流之流場結構分析
論文名稱(外文):Three-Dimensional Flow Structure Analysis of Two-Sided Lid-Driven Cavity
指導教授:蔡順峯
指導教授(外文):Shun-Feng Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:有限體積法不可壓縮流渦流結構展寬比
外文關鍵詞:Finite-Volume MethodIncompressible FlowVortex StructureSpanwise Aspect Ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用有限體積法求解三維不可壓縮黏性流體在一矩形槽裡被兩個平行移動且方向相反的對稱面所驅動,兩對稱面運動之速度一致且連續。本研究之數值分析結果將藉由實驗與網格獨立驗證其正確性,以分析矩形槽內部所生成之渦流結構。
本研究主要探討二個部分,第一部分為當矩形槽寬、高及展長比固定為1.96:1:6.55,雙面驅動速度分別從雷諾數Re=100增加至Re=1200。研究顯示當穴流在雙面驅動速度較小時,因小速度的驅動在矩形槽內會有兩條平行於展長方向的主要渦旋中心線產生,雷諾數繼續增加,流體在固定牆面因黏滯力減小的影響會產生兩條副渦旋中心線。持續增加雷諾數後,速度提高而黏滯力變小,兩條副渦旋中心線消失且兩條主渦旋中心線開始結合成一條主渦旋中心。當雷諾數達一定值且繼續增高後,矩形槽內部流場內渦旋中心線會呈現穩定的波狀。在雷諾數較小Re≦250的情況下,渦旋結構會呈現平行於z軸方向上的兩個渦旋結構或出現兩個小渦旋結構。雷諾數達275時,以垂直於z軸方向上來看,矩形槽內的渦流區域分裂為3個區塊。而雷諾數介於300~1200之間,渦流區域皆分裂為4個區塊。
第二部分所探討的是雷諾數固定為Re=800時,以固定高寬比AR=2,改變不同展寬比(Spanwise Aspect ratio,簡稱SAR=L/D)SAR=1~6,觀測矩形槽內流場結構與渦流的變化。研究顯示低展寬比SAR<2.25,矩形槽內之渦旋中心線是由頂面的角落至底面的對稱角落所形成,並呈現單一區塊的渦旋結構。當展寬比增加時,矩形槽內渦旋中心線逐漸形成不穩定波狀,於不同展寬比,原單一渦流區塊則分裂為二、三或四個區塊。

In this study, numerical simulation for three-dimensional incompressible viscous fluid in a rectangular container by two parallel and opposite direction driven is investigated. The numerical results are independently verified by experiments and grid independent tests, and analyzed the rectangular container inside the vortex generated.
The numerical results are divided two parts. The first part, a rectangular container with (SAR=6.55 and AR=2),is observed the vortex generated by increases Reynolds number from Re=100 to Re=1200.The results have shown that, two significant main parallel vortex corelines formed in the longitudinal direction in low Reynolds number. As Re≦250, the vortex structure is formed in the z axis parallel to the two vortex structure. As Re = 275,flow eddy divides the entire rectangular into three zones. As Reynolds number is between 300 and 1200, eddy regions are divided into four zones.
The second part, Reynolds number is fixed as Re = 800 and aspect ratio is AR = 2, spanwise aspect ratios SAR are changed from 1 to 6.The phoenomenon of the vortex flow in this rectangular container structure is obsered.The results shown when spanwise aspect ratio is SAR<2.25, a single zone of the vortex structure is formed. As the spanwise aspect ratio increases, the rectangular container gradually forms a instable wavy vortex coreline. The original single vortex block is split into two, three or four zone as the spanwise aspect ratios are changed.

誌謝 i
中文摘要 ii
英文摘要 iv
圖目錄 vii
符號表 ix
1. 緒論 1
1.1 前言..............................................1
1.2 研究動機與目的....................................1
1.3 文獻回顧..........................................2
1.4 論文內容與架構....................................5
2. 物理與數學模型 6
2.1 基本物理假設......................................6
2.2 統御方程式........................................7
2.3 初始條件與邊界條件................................9
3. 數值方法 11
3.1 有限體積方法概念..................................11
3.2 對流擴散離散QUCIK.................................11
3.3 SIMPLEC演算法.....................................15
3.4 程式驗證..........................................24
3.5.1 與實驗數據比較...............................24
3.5.2 網格獨立測試................................ 24
4. 結果分析 28
4.1 三維穩態穴流不同Re時穴流結構變化................28
4.1.1矩形槽內流場及渦旋中心變化情形................28
4.1.2 z軸中心x-y平面渦流變化情形..................29
4.1.3 y軸中心z-x平面與x軸中心z-y平面渦流變化情
形...........................................31
4.2 三維穩態穴流不同展寬比穴流結構變化...............57
4.2.1 矩形槽於不同展長時渦流變化情形...............57
4.2.2 矩形槽中心面(x-y,z-x,z-y)面渦流變化情形..59
5. 結論與未來研究之展望 88
5.1結論
5.1.1 三維穩態穴流不同Re時穴流結構變化.............88
5.1.2 三維穩態穴流不同展寬比穴流結構變化........... 88
5.2 未來研究之展望................................... 89
參考文獻 91

[1] Koseff, J. R. & Street, R. L. 1984a The lid-driven cavity
flow: A synthesis of qualitative and quantitative
observations. Trans. ASME: J. Fluids Engng 106, 390-398.
[2] Aidun, C. K. & Triantafillopoulos, N. G. 1997 High-speed
blade coating. In Liquid Film Coating(ed. S. F. Kistler &
P. M. Schweizer), chap. 12d, p. 637. Chapman and Hall.
[3] Triantafillopoulos, N. G. & Aidun, C. K. 1990 Relationship
between flow instability in short-dwell ponds and cross
directional coat weight nonuniformities. TAPPI J. 73,
127-136.
[4] Alleborn, N., Raszillier, H. & Durst, F. 1999 Lid-driven
cavity with heat and mass transport.Intl J. Heat Mass
Transfer 42, 833-853.
[5] Vischer, D. L. & Hager, W. H. 1998 Dam Hydraulics. Wiley.
[6] Deville, M. LE, T.-H. & Morchoisne, Y. 1992 Numerical
Simulation of 3-D Incompressible Unsteady Viscous Laminar
Flows. Notes on Numerical Fluid Mechanics, 36,
Braunschweig: Vieweg.
[7] Burggraf, O. R. 1966 Analytical and numerical studies of the
structure of steady separated flows.J. Fluid Mech. 24,
113-151.
[8] Pan, F. & Acrivos, A. 1967 Steady flows in rectangular
cavities. J. Fluid Mech. 28, 643-655.
[9] Koseff, J. R. & Street, R. L. 1984b On endwall e_ects in a
lid-driven cavity flow. Trans. ASME:J. Fluids Engng 106,
385-389.
[10] Koseff, J. R. & Street, R. L. 1984c Visualization studies
of a shear driven three-dimensional recirculating flow.
Trans. ASME: J. Fluids Engng 106, 21-29.
[11] Koseff, J. R., Street, R. L., Gresho, P. M., Upson, C. D.,
Humphrey, J. A. C. & To, W.-M. 1983 A three-dimensional
lid-driven cavity flow: Experiment and simulation. In
Proc.3rd Intl Conf.on Numerical Methods in Laminar and
Turbulent Flow (ed. C. Taylor),564-581. Pimeridge
Press.
[12] Freitas, C. J., Street, R. L., Findikakis, A. N. & Koseff,
J. R. 1985 Numerical simulation of three-dimensional flow
in a cavity. Intl J. Numer. Meth. Fluids 5, 561-575.
[13] Prasad, A. K. & Koseff, J. R. 1989 Reynolds number and
endwall e_ects on a lid-driven cavity flow. Phys. Fluids
A 1, 208-218.
[14] Rhee, H. S., Koseff, J. R. & Street, R. L. 1984 Flow
visualization of recirculating flow by rheoscopic liquid
and liquid crystal technique. Exps. Fluids 2, 57-64.
[15] Aidun, C. K., Triantafillopoulos, N. G. & Benson, J. D. 1991
Global stability of a lid-driven cavity with throughflow:
Flow visualization studies. Phys. Fluids A 3, 2081-2091.
[16] Ramanan, N. & Homsy, G. M. 1994 Linear stability of
lid-driven cavity flow. Phys. Fluids 8,2690-2701.
[17] Ding, Y. & Kawahara, M. 1998 Linear stability of
incompressible fluid flow in a cavity using fnite element
method. Intl J. Numer. Meth. Fluids 27, 139-157.
[18] Ding, Y. & Kawahara, M. 1999 Three-dimensional linear
stability analysis of incompressible viscous flows using
the finite element method. Intl J. Numer. Meth. Fluids 31,
451-479.
[19] Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001a
Multiplicity of steady two dimensional flows in two-sided
lid-driven cavities. Theor. Comput. Fluid Dyn. 14,223-241.
[20] Kuhlmann, H. C., Wanschura, M. & Rath, H. J. 1997 Flow in
two-sided lid-driven cavities:Non-uniqueness,
instabilities, and cellular structures. J. Fluid Mech.
336,267-299.
[21] Pierrehumbert, R. T. 1986 Universal short-wave instability
of two-dimensional eddies in an inviscid fluid. Phys. Rev.
Lett. 57, 2157-2159.
[22] Bayly, B. J. 1986 Three-dimensional instability of
elliptical flow. Phys. Rev. Lett. 57, 2160-2163.
[23] Kuhlmann, H. C., Wanschura, M. & Rath, H. J. 1998 Elliptic
instability in two-sided lid-driven cavity flow. Eur. J.
Mech. B/Fluids 17, 561-569.
[24] Blohm CH.& Kuhlmann, H. C. 2002 The two-sided lid-driven
cavity:experiments on stationary and time-dependent
flows.J.Fluid Mech.450,67-95.
[25]Kyoungsik Chang,George Constantinescu & Seung-o Park 2006
Analysis of the flow and mass transfer processes for the
incompressible flow past an open cavity with a laminar and
a fully turbulent incoming boundary layer. J.Fluid
Mech.561,113-145.
[26]Dolors Puigjaner,Joan Herrero Carles Simo & Francesc Giralt
2008 Bifurcation analysis of steady Rayleigh–B'enard
convection in a cubical cavity with conducting sidewalls.
J.Fluid Mech.598,393-427.
[27]F.X.Trias,M.Soria,A.Oliva & C.D.Perez-Segarra 2007 Direct
numerical simulations of two- and three-dimensional
turbulent natural convection flows in a differentially
heated cavity of aspect ratio 4. J.Fluid Mech. 586,259-293.
[28]T.P.Chang,W.H.Sheu & Robert R.Hwang 1998 effect of reynolds
number on the eddy structure in a Lid-Driven cavity.
Int.J.Numer.Meth.Fluids. 26,557-579
[29]莊惟盛 2001 已連續法求解二惟空穴流多重解之研究,國立成功
大學工程科學系,碩士論文。
[30]李文灶 2002 雙板驅動之空穴流穩定性與熱傳分析,國立成功大
學工程科學系,碩士論文。
[31]李世鳴 1999 不可壓縮Navier-Stokes方程式的數值解,國立台灣
大學造船及海洋工程研究所,博士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔