跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳天任
論文名稱:高速液體噴流霧化模式的理論分析
論文名稱(外文):Theoretical Analyses for the Atomization Model of High-speed Liquid Jets
指導教授:闕振庚
指導教授(外文):Gen-Ken Chuech
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:64
中文關鍵詞:高速噴流霧化
相關次數:
  • 被引用被引用:2
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
液體噴流霧化技術已經非常廣泛地應用在許多工業科技方面,尤其在各種引擎燃燒室內的燃料霧化應用,液體噴流霧化液滴、液滴速度分佈、噴流斷裂長度等皆對燃燒效率與排放汙染具有深遠的影響。儘管過去在此方面有許多實驗研究,但是液體噴流霧化現象的物理發生過程仍然無法完全地了解。目前在本研究中,有關高速液體噴流霧化模式,將以噴流表面波不穩定性分析為基礎,也就是說,氣/液體界面間的不穩定成長率分析,配合噴流隱埋法與環帶狀霧化模式,此法僅較少網格,來計算預測出液體噴流核心之流場結構,以及霧化液滴的形成。在本研究中,首先以數值方法分析高速液態噴流的表面波不穩定性,包含高速噴流速度變化、氣體/液體密度比變化、液體黏度與表面張力的變化,對於不穩定表面波成長率的影響。
在本研究中,建立噴流隱埋法的基本方程式,並且以數值方法求解,以預測同軸式噴流的內部軸向核心流場結構與在噴流表面的霧化現象。如此,有關霧化液滴的形成可以依據環帶狀霧化模式來建構,並進而預測流場速度、液滴剝離率與液滴大小分佈。最後,有關純水/空氣與JP-8燃油/空氣同軸式噴嘴的霧化經驗公式比較評估。

The technology of the liquid jet atomization has been widely used in many industrial and technical applications. In various engine combustion chambers, atomized drop size, velocity distribution, and breakup length have profound influences on the combustion efficiency and emission pollution. Despite a great quantity of past experimental studies, the physical process of atomization phenomenon has not been fully understood. In the present study, based on the jet surface wave instability analysis on the interface of liquid and gas, the atomization model for the high-speed liquid jets was established and coupled with Jet Embedding Method and an annular ligament breakup model, which needs only economic adaptive grid system. Accordingly, the liquid jet core and drop formation in the atomization process can be numerically predicted. In the present study, the surface wave instability of high-speed liquid jets was first analyzed using the numerical method, including the influences of variations of jet velocity, gas/liquid density ratio, liquid viscosity and surface tension for high-speed liquid jets on growth rates of instable waves along the liquid jet surface.
In the present study, the basic equations governing the flow field using Jet Embedding Method was set up and solved to determine the formation of the liquid jet core and the atomization on the liquid jet surface. Thus, drop formation can be established according to the annular ligament breakup model to predict the flow velocity, drop breakup rate, and drop size distribution. Finally, the atomization of water/air and JP-8 fuel oil/air ejected from a coaxial injector was numerically predicted, and evaluated by comparing with the CICM empirical correlation.

摘要 I
英文摘要 II
目錄 III
圖目錄 IV
表目錄 VI
符號說明 VII
第一章 研究介紹 1
1-1 研究動機 1
1-2 文獻回顧 3
1-3 研究目標 7
第二章 不穩定波成長模式 8
2-1不穩定波之理論分析 8
2-2 不穩定波之數值分析 14
2-3 不穩定波之成長率 15
第三章 噴流的霧化模式 25
3-1破裂霧化機制 25
3-2 CIMI霧化模式 27
3-3環狀霧化模式 28
3-4噴流氣液界面模式 30
第四章 高速噴流霧化分析 34
4-1噴流的不穩定波與霧化關係 34
4-2同軸式水噴流霧化分析 37
4-3同軸式燃油噴流霧化分析 46
第五章 結論與建議 58
5-1目前結論 58
5-2未來建議 59
文獻參考 61

1. Faeth, G. M., “Mixing, Transport and Combustion in Sprays,” Progress in Energy Combustion Science, Vol. 13, No. 2, 1987, pp. 293-345.
2. Reitz, R. D. and Bracco, F. V., “Mechanism of Atomization of a Liquid Jet,” Phys Fluid, Vol. 25, No. 10, 1982, pp.1730-1742.
3. Bracco, F. V., “Modeling of Engine Sprays,” SAE paper 790494, 1979.
4. Kuo, T. and Bracco, F. V., “Computations of Drop Sizes in Pulsating Sprays and of Liquid-Core Length in Vaporizing Sprays” SAE paper 820133, SAE Trans. Vol. 91 1982, p.4.
5. Hoyt, J. W. & Taylor, J. J., J.Fluid Mech, 1977, pp.119-127.
6. Rayleigh, Lord, “On the Instability of jets,” Proceedings of London Math. Society, Vol. 10, 1879.
7. Sterling, M. and Sleicher, C. A., “The Instability of Capillary Jets,” J. Fluid Mech., Vol. 68, 1975, pp.477~495.
8. McCarthy, M. J. and Molloy, N. A., “Review of Stability of Liquid Jet and the Influece of Nozzle Design”, Chem Eng J., Vol. 7,1974, pp.1~20.
9. Weber, C., “ZumZerfalleines Flussigkeitsstrakles,” Z. Angew. Math. Mech. Vol. 11, 1931, p.136.
10. Yuen M.C., “Non-linear Capillary Instability of a Liquid Jet” J. Fluid Mechanics, Vol. 33, Part.1, 1968, pp.151~163.
11. Taub, H.H., “Investigation of Nonlinear Waves on Liquid Jets,” The Physics of Fluids, Vol. 19, No.8, 1976.
12. Chaudhary, K. C. and Redekopp, L. G., “The Nonlinear Capillary instability of a Liquid Jet. Part I, II, III,” J. Fluid Mechanics. Vol. 96, Part.2, 1980.
13. Chuech, S. G. Przekwas, A. J. and Yang, H. Q., “Direct Simulation for The Instability and Breakup of Laminar Liquid Jets” AIAA-90-2066, 1990.
14. Shokoohi, F., and Elrod, H.G., “Numerical Investigation of the Disintegration of Liquid Jets,” J. Comp. Phys., Vol. 71, 1987, pp.324-342.
15. Childs, R.E., and Mansour, N.N., “Simulation of Fundamental Atomization Mechanism in Fuel Spray,” AIAA-88-02389,1988
16. Wu, K. J., Reitz, R. D. and Bracco, F. V., “Measurements of drop size at the spray edge near the nozzle in atomizing liquid jets”, Phys Fluid. Vol. 29, No. 4, 1985, pp.941-951.
17. Reitz, R. D., “Modeling Atomization Processes in High-pressure Vaporizing Sprays”, A & S T 3, 1987, pp.309-337.
18. Chuech, S. G., Przekwas, A. J. and Singhal, A. K., “Numerical Modeling for Primary Atomization of Liquid Jet” J. Propulsion. Vol. 7, No.6, Nov-Dec. 1991.
19. Mayer, E., “Theory of Liquid Atomization in Hugh Velocity Gas Streams, ” ARS Journal, Vol.31, No. 12, 1961, pp. 1783-1785.
20. Adelberg, M., “Breakup Rate and Penetration of a Liquid Jet in a Gas Stream, ” AIAA Jounal, Vol. 5, NO. 8, 1967, pp.1408-1415.
21. Adelberg, M., “Men Drop Size Resulting from the Injection of a Liquid Jet into a High-speed Gas Stream,” AIAA Jounal, Vol. 6, NO. 6, 1968, pp.1143-1147.
22. Lamb, H., Hydrodynamics, 6 ed., Dover, New York, 1945.
23. Jeffreys, H., “On the Fornation of Water Waves by Wind,” Proceedings of the Royal Society, The Royal Society, London, Vol. 107, 1925, pp. 189-205.
24. Sutton, R. D., Schuman, M. D., and Chadwick, W. D.,“Operating Manual for Coaxial Injection Combustion Model,” NASA CR-129031, 1974.
25. Liang, P. Y., Eastes, T. and Gharakhani, A., “Computer Simulation of Drop Deformation and Drop Breakup”, in 24 Exhibit, AIAA-88-3142, pp. 1-8, Boston, MA, July 1988.
26. Hirt, C. W., and Nichols, B. D., “Volume of Fluid ( VOF ) Method for the Dynamics of Free Boundaries”, Vol. 39, 1981, pp. 201-225.
27. Przekwas, A. J., “Spray Formation in Liquid Propellant Atomization System,” JANNAF Workshop on Atomation, NASA Marshall Space Flight Center, Huntsville, AL, May 1987.
28. Liang, P. Y., “Liquid Rocket Combustor Computer Code Development,” Proceeding of High-pressure Oxygen/Hydrogen Thechnology Conference, NASA CP-2372, June 1984, pp. 696-716.
29. Przekwas, A. J., Chuech, S. G., and Gross, K. W., “Computational Modeling Development for Liquid Propellant Atomization,” Proceedings of the 25 JANNAF Combustion Meeting: Vol. 11, NASA Marshall Space Flight Center, Huntsville AL, Oct. 1988, pp. 81-92.
30. Levich, V. G., “Physicochemical Hydrodynamics,” Prentice-hall, Englewood Cliffs, 1962.
31. Donnely, R. J., and Glaberson, W., “Experiment on he Capillary Instability of a Liquid Jet,” Proc. Roy. Soc., (London), Vol. A290, 1965, pp. 547-556.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top