# 臺灣博碩士論文加值系統

(100.28.227.63) 您好！臺灣時間：2024/06/22 01:37

:::

### 詳目顯示

:

• 被引用:0
• 點閱:233
• 評分:
• 下載:21
• 書目收藏:0
 對於橢圓型偏微分方程式問題，本文採用創新有限差分法將問題離散為代數方程式，再使用流形指數收歛演算法，將代數方程式轉變成常微分方程式，並配合數值積分法求解。相較於傳統的有限差分法，本文提出的創新有限差分法可以處理非規則幾何形狀的問題。使用一個虛擬的矩形覆蓋於計算域上，並引入有限差分法的概念來處理非規則幾何形狀。藉由規則網格點與邊界點的關係與雙線性分佈假設，來滿足物理問題的邊界條件，因此本文提出的創新有限差分法可以有效率的處理非規則幾何形狀的問題。同時，流形指數收歛演算法對於初始猜值並不敏感性、也不需計算Jacobian matrix的反矩陣，並且殘差有著指數收歛行為，因此能獲得相當滿意的結果與快速的收斂行為。經由幾個算例的測試及驗證，可看出本文提出之數值方法在處理線性、擬線性及非線性的偏微分方程式問題效果是很穩定的，並且在多連通區域也可適用。
 In this paper the elliptic-type partial differential equations (PDEs) are transformed to a system of algebraic equations by the novel finite difference method (Novel FDM). Then, by using the manifold-based exponentially convergent algorithm (MBECA), the system of algebraic equations is converted to a system of ordinary differential equations (ODEs) which will be numerically integrated by numerical integration method. In comparing with the conventional finite difference method (FDM), the Novel FDM can deal with the problems in irregular geometric shapes. The proposed method uses a virtual rectangle to embed the physical domain and then using the conventional FDM to discretize the virtual domain. Utilizing the relationship of field values on the uniform grid and on the boundary points, the boundary conditions can be satisfied under the bi-linear assumption. In addition, the MBECA is insensitive to the guessing of initial conditions and can avoid calculating the inverse of Jacobian matrix. Besides, the evolutionary process of the residual in MBECA is exponentially convergent. So, the Novel FDM, proposed in this thesis, can efficiently obtain excellent results. From the numerical tests and validation, it is proven that the Novel FDM can stably and quickly deal with linear, quasilinear and nonlinear PDEs, even the problems in multiply-connected domains.
 目錄摘要 iAbstract ii目錄 iv圖目錄 vi第一章 緒論 11-1 前言 11-2 研究目的與動機 11-3 文獻回顧 21-4 本文架構 3第二章 理論基礎 52-1 非線性現象 52-2 偏微分方程概述 52-3 邊界條件的類型 6第三章 數值方法 73-1創新有限差分法 83-2流形指數收歛演算法 13第四章 數值結果與討論 164-1 例題一 164-2 例題二 244-3 例題三 314-4 例題四 354-5 例題五 414-6 例題六 484-7 例題七 524-8 例題八 554-9 例題九 60第五章 結論與未來展望 655-1 結論 655-2 未來展望 66參考文獻 67圖目錄圖3.1物理問題計算域、邊界及虛構矩形示意圖。 8圖3.2於矩形上建立有限差分法的網格。 8圖3.3二維有限差分法中， 點與周圍的點。 9圖3.4最外圍的網格格點不需強迫滿足控制方程。 10圖3.5部分網格內會有一個或者是一個以上的邊界點於其中。 10圖3.6 將 座標系統轉換為局部座標系統 。 11圖4.1：例題一的計算域與所對應的邊界。 17圖4.2︰例題一(類型一)殘差隨虛擬時間演化情形。 18圖4.3︰例題一(類型一) (a)解析解，(b)數值解。 19圖4.4︰例題一(類型一)相對誤差圖。 20圖4.5︰例題一(類型二)殘差隨虛擬時間演化情形。 22圖4.6︰例題一(類型二)(a)解析解，(b)數值解。 23圖4.7︰例題一(類型二)相對誤差圖。 24圖4.8：例題二的計算域與所對應的邊界。 25圖4.9：例題二(類型一)殘差隨虛擬時間演化情形。 26圖4.10：例題二(類型一)(a)解析解，(b)數值解。 27圖4.11：例題二(類型一)相對誤差圖。 28圖4.12：例題二(類型二)殘差隨虛擬時間演化情形。 29圖4.13：例題二(類型二)(a)解析解，(b)數值解。 30圖4.14：例題二(類型二)相對誤差圖。 31圖4.15：例題三的計算域與所對應的邊界。 32圖4.16：例題三殘差隨虛擬時間演化情形。 33圖4.17：例題三(a)解析解，(b)數值解。 34圖4.18：例題三相對誤差圖。 35圖4.19：例題四(類型一)殘差隨虛擬時間演化情形。 36圖4.20：例題四(類型一)(a)解析解，(b)數值解。 37圖4.21：例題四(類型一)相對誤差圖。 38圖4.22：例題四(類型二)殘差隨虛擬時間演化情形。 39圖4.23：例題四(類型二) (a)解析解，(b)數值解。 40圖4.24：例題四(類型二)相對誤差圖。 41圖4.25：例題五的計算域與所對應的邊界。 42圖4.26：例題五(類型一)殘差隨虛擬時間演化情形。 43圖4.27：例題五(類型一)(a)解析解，(b)數值解。 44圖4.28：例題五(類型一)相對誤差圖。 45圖4.29：例題五(類型二)殘差隨虛擬時間演化情形。 46圖4.30：例題五(類型二)(a)解析解，(b)數值解。 47圖4.31：例題五(類型二)相對誤差圖。 48圖4.32：例題六的計算域與對應的邊界。 49圖4.33：例題六中殘差隨虛擬時間演化情形。 50圖4.34：例題六中(a)解析解，(b)數值解。 51圖4.35：例題六中相對誤差圖。 52圖4.36：例題七殘差隨虛擬時間演化情形。 53圖4.37：例題七 (a)解析解，(b)數值解。 54圖4.38：例題七相對誤差圖。 55圖4.39：例題八的計算域與所對應的邊界。 56圖4.40：例題八殘差隨虛擬時間演化情形。 58圖4.41：例題八(a)解析解，(b)數值解。 59圖4.42：例題八相對誤差圖。 60圖4.43：例題九的計算域與所對應的邊界。 61圖4.44：例題九殘差隨虛擬時間演化情形。 62圖4.45：例題九(a)解析解，(b)數值解。 63圖4.46：例題九相對誤差圖。 64
 參考文獻Atkonson, K.: The Numerical Solution of Integral Equations of the Second Kind. Combridge University, Cambridge, U.K., 1997.Atluri, S. N.; Kim, H. G.; Cho, J. Y.: A critical assessment of the truly mesh-less local Petrov-Galerkin(MlPG), and local boundary integraeqyation(LBIE) method. Comp. Mech., vol. 24, pp. 348-372, 1999.Atluri, S. N.; Shen, S.: The meshless local Petrov-Galerkin(MlPG) method: a simple and less-costly alternative to the finite element and boundary element methods. CMES: Computer Modeling in Engineering and Sciences, vol. 3, pp. 11-51, 2002.Bear J.: Hydraulics of Groundwater Flow. McGraw-Hill, New York, U.S.A., 1979.Balakrishnan, K.; Ramachandran, P. A.: A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer. Journal of Computational Physics, vol. 150, pp. 239-267, 1999.Chen, J. T.; Lin, S.-R.; Chen, K.-H.: Degenerate scale problem whem solving Laplace’s equation by BEM and its treatment, Int. J.Num. Meth. Engng., vol. 62, pp. 233-261, 2005.Chen, G.; Zhou, J. X.: Algorithms and visualization for solution of nonlinear elliptic equations. International Journal of Bifurcation and Chaos, vol. 10, pp. 1565-1612, 2000.Ku, C.-Y.; Yeih, W.; Liu, C.-S.; Chi, C.-C.: Applications of the Fictious Time Integration Method Using a New Time-Like Function. CMES: Computer Modeling in Engineering and Sciences, vol. 43, pp. 173-190, 2009.Ku, C.-Y.; Yeih, W.; Liu, C.-S.: Solving Non-Linear Algebraic Equations by a Scalar Newton-homotopy Continuation Method. International Journal of NonLinear Sciences and Numerical Simulation, 2010. (accepted)Lesnic, D.; Elliott, L.; Ingham, D. B.: The boundary element solution of the Laplace and binarmonic equations subjected to noisy boundary data. Int. J. Num. Meth. Engng., vol. 43, pp. 479-492, 1998.Liu, C.-S.: Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics, vol. 318, pp. 1047-1068, 2001.Liu, C.-S.: Group Preserving Scheme for Backward Heat Conduction Problem. International Journal of Non-Linear Mechanics, vol. 47, pp. 2567-2576, 2004.Liu C.-S.; Chang, C.-W.; Chang, J.-R.: Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems, CMES: Computer Modeling in Engineering and Sciences, vol. 12, pp. 67-81, 2006.Liu, C.-S.: A modified Trefftz method for two-dimensional Laplace equation considering the domain’s characteristic length. CMES: Computer Modeling in Engineering and Sciences, vol. 21, pp. 53-65, 2007a.Liu, C.-S.: A highly accurate solver for the mixed-boundary potential problem and singular problem in arbitrary plane domain. CMES: Computer Modeling in Engineering and Sciences, vol. 20, pp. 111-122, 2007b.Liu, C.-S.: An effectively modified direct Trefftz method for 2D potential problems considering the domain’s characteristic length. Engineering Analysis of Boundary Element, vol. 31, pp. 983-993, 2007c.Liu, C.-S.: A meshless regularized integral equation method for Laplace equation in arbitrary interior or exterior plane domains. CMES: Computer Modeling in Engineering and Sciences, vol. 19, pp. 99-109, 2007d.Liu, C.-S.: A MRIEM for solving the Laplace equation in the doubly-connected domain. CMES: Computer Modeling in Engineering and Sciences, vol. 19, pp. 45-161, 2007e.Liu, C.-S.: A fictitious time integration method for two-dimensional quasilinear elliptic boundary value problems. CMES: Computer Modeling in Engineering and Sciences, vol. 33, pp. 179-198, 2008a.Liu, C.-S.: A highly accurate collocation Trefftz method for solving the Laplace equation in the doubly-connected domains. Numerical Method for Partial Differential Equations, vol. 24 pp. 179-192, 2008b.Liu, C.-S.: Solving an inverse Sturm-Liouville problem by a Lie-group method. Boundary Value Problems, vol. 2008, Article ID 749865, 2008c.Liu, C.-S.: Identifying time-dependent damping and stiffness functions by a simple and vet accurate method. Journal of Sound and Vibration, vol. 318, pp. 148-165, 2008d.Liu, C.-S.: A Lie-group shooting method for simultaneously estimating the time-dependent damping and stiffness coefficients. CMES: Computer Modeling in Engineering and Sciences, vol. 27, pp. 137-149, 2008e.Liu, C.-S.: A time-marching algorithm for Solving non-linear obstacle problems with the aid of an NCP-function. CMC: Computers, Materials and Continua, vol. 8, pp. 53-65, 2008f.Liu, C.-S.: A fictitious time integration method for solving m-point boundary value problems. CMES: Computer Modeling in Engineering and Sciences, vol. 39, pp. 125-154, 2009a.Liu, C.-S.: A fictitious time integration method for the Burgers equation. CMC: Computers, Materials and Continua, vol. 9, pp. 229-252, 2009b.Liu, C.-S.: A fictitious time integration method for solving delay ordinary differential equation. CMC: Computers, Materials and Continua, vol. 10, pp. 97-116, 2009c.Liu, C.-S.: A Fictitious time integration method for a Quasilinear Elliptic Boundary Value Problem, Defined in an Arbitrary Plane Domain. CMC: Computers, Materials and Continua, vol. 11, pp. 15-32, 2009d.Liu, C.-S.; Atluri, S. N.: A novel time integration method for solving a large system of non-linear algebraic equations. CMES: Computer Modeling in Engineering and Sciences, vol. 31, pp. 71-83, 2008a.Liu, C.-S.; Atluri, S. N.: A fictitious time integration method (FTIM) for solving mixed complementarity problems with applications to non-linear optimization. CMES: Computer Modeling in Engineering and Sciences, vol. 34, pp. 155-178, 2008b.Liu, C.-S.; Atluri, S. N.: A novel fictitious time integration method for solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues. CMES: Computer Modeling in Engineering and Sciences, vol. 36, pp. 261-285, 2008c.Liu, C.-S.; Atluri, S. N.: A fictitious time integration method for the numerical solution of the Fredholm integral equation and for numerical differentiation of noisy data, and its relation to the filter theory. CMES: computer modeling in engineering and sciences, vol. 41, pp. 243-261, 2009.Liu, C.-S.; Yeih, W.; Atluri, S. N.: On solving the ill-conditioned system Ax=b: general-purpose conditioners obtained from the boundary-collocation solution of the Laplace equation, using Trefftz expansions with multiple length scales. CMES: Computer Modeling in Engineering and Sciences. vol. 44, pp. 281-311, 2009.Liu, C.-S.; Yeih, W.; Kuo, C.-L.; Atluri, S. N.: A scalar Homotopy method for soving an over/under-determined system of non-linear algebraic equation. CMES: Computer Modeling in Engineering and Sciences, vol. 53, pp. 47-71, 2009.Liu, C.-S.; Ku, C.-Y.; Yeih, W.; Fan, C.-M.; Atluri, S. N.: An Exponentially Convergent Scalar Homotopy Algorithm for Solving A Determinate/Indeterminate System of Non-Linear Algebraic Equations. Journal of Computational Physics, 2010. (submitted)Prosser, J. I.; Gray, T. R. G.: Use of Finite Difference Method to Study a Model System of Nitrification at Low Substrate Concentrations. Journal of General of Microbiology, vol. 102, pp. 119-128, 1977.Sincovec, R.; Madsen, N.: Software for nonlinear partial differential equations. ACM Transactions of Mathematical Software, vol. 1, pp. 232-260, 1975.Shidfar A.; Pourgholi R.: Application of finite difference method to analysis an ill-posed problem. Applied Mathematics and Computation. pp. 1400-1408, 2005.Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H.: Computational Fluid Mechanics and Heat Transfer. Taylor&Francis, Second Edition. Washington, DC, U.S.A., 1997.Tian, H. Y.; Reutskiy, S.; Chen, C. S.: A basis function for approximation and the solutions of partial differential equations. Numerical Method for Partial Differential Equations, vol. 24, pp. 1018-1036, 2008.陳駿逸，「計算偏微分方程之頻譜配點法」，東海大學，應用數學研究所，碩士班論文，民國93年。郭仲倫，「二維多連通區域的拉普拉斯內外域問題研究」，國立海洋大學，機械與機電工程學系，碩士班論文，民國96年。
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 二維多連通區域的拉普拉斯內外域問題研究 2 計算偏微分方程之頻譜配點法

 無相關期刊

 1 具顫振與發散不穩定之轉子系統的主動振動制抑 2 考慮模態觀測器動態特性之輸送流體管樑的主動振動制抑 3 航商攬收危險品主要考量因素之研究 4 航港機關審核衡量船舶進港風險因素評估之研究 5 探討A23187藥物經由BNIP3誘導神經母細胞瘤死亡 6 砷與鎘對發育中斑馬魚DNA錯誤配對辨識蛋白MutS homolog 2及6(MSH2&6) 基因表現之影響 7 斑馬魚胚胎時期低氧誘發蛋白HIF2α 對於Birc5b 基因之調控 8 燃料電池車故障容許系統之可靠度研究 9 懸臂樑式撓性夾具輔以雙軸向振動對於精密車削之影響研究 10 懸臂樑式撓性夾具對於精密車削之影響研究 11 出口競爭力、資源稟賦與水產品貿易 12 台灣東南部海域橈足類多樣性之研究 13 應用反射板與同平面圓環結構之單極天線之研究 14 改善筆記型電腦二次充電式鋰電池充電時間與循環壽命 15 架空輸電線路防雷方法分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室