(3.236.118.225) 您好!臺灣時間:2021/05/17 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳書名
研究生(外文):Shu-Ming Wu
論文名稱:類鑽碳鍍膜對含鈦高強度低碳鋼之銲接殘留應力影響
論文名稱(外文):Effect of diamond-like carbon coating on welding residual stress of titanium bearing low carbon high strength steel
指導教授:王星豪
指導教授(外文):Shing-Hoa Wang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:61
中文關鍵詞:銲接殘留應力類鑽碳薄膜陰極電弧沉積有限元素法
外文關鍵詞:Welding residual stressDiamond like carbonCathodic arc PVDFinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨是在於以實驗及模擬對兩種不同初始溫度之含鈦高強度低碳鋼平板於相同銲接輸入熱下的銲接殘留應力分佈情況之探討。初始溫度為 7 oC 之平板有著較初始溫度為 25 oC 之平板大的殘留張應力,這可歸因於 7 oC 之平板在銲接過程中有著較大的溫度梯度所導致。以陰極電弧鍍類鑽碳薄膜於銲接過之含鈦高強度低碳鋼平板上,會降低及釋放某種程度上的銲接殘留應力。利用有限元素法模擬銲接程序,計算出銲後產生的殘留應力,和鑽孔法量測殘留應力的值,相當接近,這也驗證了運用有限元素之方法來解析殘留應力,相當可行。
The distribution of welding residual stresses in high strength titanium bearing low carbon steel with two different initial plate temperatures before welding was measured and calculated under the same heat input. The as-welded 7 oC plate exhibited a higher residual tensile stress than as-welded 25 oC plate due to the greater temperature gradient. Diamond like carbon (DLC) thin film deposited on the as welded plates can reduce the magnitude of the welding residual stress caused by the cathodic arc physical vapour deposition (PVD) process. The distribution of the measured welding residual stresses agrees with finite element method (FEM) simulated results very well.
Table of Contents
摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
Table Caption List vi
Figures Caption List vii
Chapter 1 Introduction 1
Chapter 2 Literatures Review 3
Chapter 3 Experimental procedures 12
3.1 Material 12
3.2 Pulsed gas tungsten arc welding 14
3.3 Welding thermal cycle measurement 16
3.4 Microhardness measurement 16
3.5 Optical microstructure observation 17
3.6 SEM microstructure observation 17
3.7 Residual stress measurement 18
3.8 DLC coating 21
3.9 Raman spectrometry 22
3.10 Finite element analysis 23
Chapter 4 Results and Discussion 25
4.1 The microstructure of titanium bearing low carbon high strength steel 25
4.1.1 The optical microstructure of as-received Ti bearing low carbon high strength steel 25
4.1.2 Comparison between welding conditions 25 oC welded plate and 7 oC welded plate 25
4.2 Diamond-like carbon (DLC) films relaxing the welding residual stress for Ti bearing low carbon high strength steel 32
4.2.1 The residual stress distribution of 25 oC welded plate and 7 oC welded plate 32
4.2.2 Stress released by DLC coating on the 25 oC welded plate and 7 oC welded plate 34
Chapter 5 Conclusions 42
References 43
Appendix 50

Table Caption List
Table 3.1 Composition analysis of Ti bearing low carbon steel by glow discharge spectrometer 13
Table 3.2 Mechanical properties of the high strength Ti bearing low carbon steel 13
Table 3.3 Parameters for pulsed GTAW 15
Table 4.1 Thermophysical properties of the high strength Ti bearing low carbon steel 37

Figures Caption List
Fig. 2.1 Residual stresses originate from misfits between different regiona [5] 9
Fig. 2.2 Changes in temperature and stresses during welding [7] 10
Fig. 2.3 Haigh-diagram of longitudinal stiffeners [8] 11
Fig. 2.4 Schematic diagram of origin of residual stress during heating and cooling [22] 11
Fig. 3.1 Defined pulse and base current modes 15
Fig. 3.2 The equipment of hole drilling machine for measuring residual stress [37] 19
Fig. 3.3 The high-speed air turbine for hole drilling [38] 20
Fig. 3.4 The microscope and illuminator for precision alignment [38] 20
Fig. 3.5 FEM simulated mesh and moving heat source 24
Fig. 4.1 Optical microstructure of as-received Ti bearing low carbon steel 27
Fig. 4.2 Cross section microstructure of FZ (weld metal) of (a) 25oC plate; (b) 7oC plate 28
Fig. 4.3 Top view microstructure of FZ (weld metal) of (a) 25oC plate; (b) 7oC plate 29
Fig. 4.4 Microstructure of as-welded 25oC plate at (a) the coarse-grained HAZ adjacent to the fusion line; (b) the fine-grained HAZ adjacent to the BM 30
Fig. 4.5 Microstructure of as-welded 7oC plate at (a) the coarse-grained HAZ adjacent to the fusion line; (b) the fine-grained HAZ adjacent to the BM 31
Fig. 4.6 (a) Welding residual stress distribution of the measured and predicted by finite element method (FEM) analysis; (b) comparison of thermal history closest to the fusion line 38
Fig. 4.7 Thermal cycle of various locations during welding in (a) 25oC plate; (b) 7oC plate 39
Fig.4.8 Comparison of FEM welding peak temperatures with measured results for as-welded plates 40
Fig. 4.9 Measured Raman spectra of deposited DLC films consisting of two Gaussian distributions 40
Fig. 4.10 Measured and FEM simulated residual stress redistribution after DLC coating compared with as-welded 41
[1]Y.C. Lin, S.C. Chen, “Effect of stress on thermal fatigue in a type 420 martensitic stainless steel weldment”, Journal of Materials Processing Technology 138 (2003) 22-27.
[2]H. Kakiuchi, T. Kobayashi, T. Terai, “Property change of diamond-like carbon thin films due to ion implantation”, Nuclear Instruments and Methods in Physical Research Section B 166-167 (2000) 415-419.
[3]S.H. Wang, S.H. Shan, Y.C. Pan, “Residual stress and its effect on corrosion behavior of butt jointed Cu-Al alloys”, Science and Technology of Welding and Joining 4(3) (1999) 182-186.
[4]Tso-Liang Teng, Peng-Hsiang Chang, Wen-Cheng Tseng, “Effect of welding sequences on residual stresses”, Computers and Structures 81 (2003) 273-286.
[5]P.J. Withers, H.K.D.H. Bhadeshia, “Residual Stress Part 1 - Measurement Techniques”, Materials Science and Technology 17 (2001) 355-365.
[6]Sindo Kou, “Welding Metallurgy”, 2nd Edition, John Wiley & Sons, Inc., New Jersey (2003) 122-124.
[7]C. Weisman, “Welding Handbook”, 7th Edition, Vol. 1, Fundamentals of Welding, American Welding Society, Miami, FL (1976).
[8]C.M. Sonsino, “Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry”, International Journal of Fatigue 31 (2009) 88-101.
[9]F.J. Kahlen, A. Kar, “Residual Stresses in Laser-Deposited Metal Parts”, Journal of Laser Applications 13(2) (2001) 60-69.
[10]Liang Wang, Sergio D. Felicelli, Phillip Pratt, “Residual stresses in LENS-deposited AISI 410 stainless steel plates”, Materials Science and Engineering A 496 (2008) 234-241.
[11]L. Wagner, “Mechanical surface treatments on titanium, aluminum and magnesium alloys”, Materials Science and Engineering A 263(2) (1999) 210-216.
[12]P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade, “Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour”, Materials Science and Engineering A 210(1-2) (1996) 102-113.
[13]R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, R.O. Ritchie, “On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures”, Materials Science and Engineering A 355(1-2) (2003) 216-230.
[14]E.R. de los Rios, P. Mercier, B.M. El-Sehily, “Short crack growthbehaviour under variable amplitude loading of shotpeened surfaces”, Fatigue & Fracture of Engineering Materials & Structures 19(2) (1996) 175-184.
[15]Jonassen F., Meriam J.L., Degarmo E.P., “Effect of Certain Block and Other Special Welding Procedures on Residual Welding Stresses”, Welding Journal 25(9) (1946) 492s-496s.
[16]Y.J. Chuang, C.H. Lin, Y.C. Lin, “A study of Heat-absorbing Paste on Residual Stress and Angular Distortion in Weldment”, Journal of Materials Science and Engineering 33(1) (2001) 55-59.
[17]James M., Mahoney M., “Residual stress measurements in friction stir welded aluminium alloys”, Proceedings of the First International Symposium, Friction Stir Welding, Thousand Oaks, CA, USA (1999).
[18]F.W. Brust, E.F. Rybicki, “A computational model of backlay welding for controlling residual stresses in welded pipes”, Journal of Pressure Vessel Technology 103 (1981) 226-232.
[19]E.F. Rybicki, P.A. Mcguire, “The effects of induction heating conditions on controlling residual stresses in welded pipes”, Journal of Engineering Materials and Technology 104 (1982) 267-273.
[20]R.L. Koch, E.F. Ribicki, R.D. Strttan, “A computational temperature analysis for induction heating of welded pipes”, Journal of Engineering Materials and Technology 107 (1985) 148-153.
[21]Tasuku Shimizu, Kunio Enomoto, Shinji Sakata, Wataru Sagawa, “Residual stresses in girth butt welded pipes and treatments to modify these”, International Journal of Pressure Vessels and Piping 16 (1984) 299-319.
[22]Y.C. Lin, C.P. Chou, “A new technique for reducing the residual stress induced by welding in type 304 stainless steel”, Journal of Materials Processing Technology 48 (1995) 693-698.
[23]Xiang Ling, Gang Ma, “Effect of ultrasonic impact treatment on the stress corrosion cracking of 304 stainless steel welded joins”, Journal of Pressure Vessel Technology 131 (2009) 051502.1-051502.5.
[24]H.J. Stone, H.K.D.H. Bhadeshia, P.J. Withers, “In situ monitoring of weld transformations to control weld residual stresses”, Materials Science Forum 571-572 (2008) 393-398.
[25]H. Dai, J.A. Francis, H.J. Stone, H.K.D.H. Bhadeshia, P.J. Withers, “Characteriaing phase transformations and their effects on ferritic weld residual stresses with X-rays and neutrons”, Metallurgical and Materials Transactions A 39A (2008) 3070-3078.
[26]A.A. Shirzadi, H.K.D.H. Bhadeshia, L. Karlsson, P.J. Withers, “Stainless steel weld metal designed to mitigate residual stresses”, Science and Technology of Welding and Joining 14(6) (2009) 559-565.
[27]J.A. Francis, H.J. Stone, S. Kundu, H.K.D.H. Bhadeshia, R.B. Rogge, P.J. Withers, L. Karlsson, “The effects of filler metal transformation temperature on residual stresses in a high strength steel weld”, Journal of Pressure Vessel Technology 131 (2009) 041401.1-041401.8.
[28]D.W. Becker, C.M. Adams, “The role of pulsed GTA welding variables in solidification and grain refinement”, Welding Journal 58(5) (1979) 143s-152s.
[29]C.F. Tseng, W.F. Savage, “The effect of oscillation” Welding Journal 50(11) (1971) 777-786.
[30]W.H. Kim, S.J. Na, “Heat and fluid flow in pulsed current GTA weld pool”, International Journal of Heat and Mass Transfer 41 (1998) 3213-3227.
[31]K.H. Tseng, C.P. Chou, “The effect of pulsed GTA welding on the residual stress of a stainless steel weldment”, Journal of Materials Processing Technology 123 (2002) 346-353.
[32]H.H Lee, S.H. Wang, C.Y. Shin, C.M. Cheng, H.C. Hsu, K. Kan, C.M. Sung, “Relaxing welding residual stresses by diamond like carbon coating on duplex titanium alloys”, Science and Technology of Welding and Joining 13(1) (2008) 75-79.
[33]M. Šniurevičiūtė, J. Laurikaitienė, D. Adlienė, L. Augulis, Ž. Rutkūnienė, A. Jotautis, “Stress and strain in DLC films induced by electron bombardment”, Vacuum 83 (2009) S159-S161.
[34]William D. Sproul, “Physical vapor deposition tool coatings”, Surface and Coating Technology 81 (1996) 1-7
[35]Yoshihiro Oka, Michiharu Kirinuki, Yoshimi Nishimura, Kingo Azuma, Etsuo Fujiwara, Mitsuyasu Yatsuzuka, “Measurement of residual stress in DLC films prepared by plasma-based ion implantation and deposition”, Surface and Coatings Technology 186 (2004) 141-145.
[36]Cheng-Hsun Hsu, Ming-Li Chen, “Corrosion resistance of TiN/TiAlN-coated ADI by cathodic arc deposition”, Materials Science and Engineering A 421 (2006) 182-190.
[37]Hao-Hsun Lee, “The Microstructure of High Temperature Deformation and Welding Residual Stress Analysis of Titanium Alloys”, Master thesis, National Taiwan Ocean University, Keelung, Taiwan (2007).
[38]Lin-Shan Huang, “Analysis and Measurement of the Residual Stress in the Plane Weldment”, Master thesis, National Cheng Kung University, Tainan, Taiwan (2003).
[39]H.K.D.H. Bhadeshia, R.W.K. Honeycombe, “Steels:Microstructure and Properties”, 2nd Edition, Butterworth, Washington, DC (1995) 308-328.
[40]G. Madhusudhan Reddy, T. Mohandas, K.K. Papukutty, “Effect of welding process on the ballistic performance of high-strength low-alloy steel weldments”, Journal of Materials Processing Technology 74 (1998) 27-35.
[41]Yaowu Shi, Zhunxiang Han, “Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel”, Journal of Materials Processing Technology 207 (2008) 30-39.
[42]L. Mujica, S. Weber, H. Pinto, C. Thomy, F. Vollertsen, “Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels”, Materials Science and Engineering A 527 (2010) 2071-2078.
[43]Y.C. Lin, K.H. Lee, “Effect of welding parameters on the residual stress by the parallel heat welding”, International Journal of Pressure Vessels and Piping 71 (1997) 197-202.
[44]A. Bastier, M.H. Maitournam, K.D. van, F. Roger, “Steady state thermomechanical modelling of friction stir welding”, Science and Technology of Welding and Joining 11(3) (2006) 278-288.
[45]Kyong-Ho Chang, Chin-Hyung Lee, “Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading”, Material and Structures 42 (2009) 791-801.
[46]H.Y. Ueng, C.T. Guo, K.H. Dittrich, “Development of a hybrid coating process for deposition of diamond-like carbon films on microdrills”, Surface and Coatings Technology 200 (2006) 2900-2908.
[47]M.M. Morshed, B.P. McNamara, D.C. Cameron, M.S.J. Hashmi, “Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source”, Journal of Materials Processing Technology 141 (2003) 127-131.
[48]A.C. Ferrari, “Determination of bonding in diamond-like carbon by Raman spectroscopy”, Diamond and Related Materials 11 (2002) 1053-1061.
[49]M. Yoshikawa, “Properties and Characterization of Amorphous Carbon Film”, Materials Science Forum 52-53 (1990) 365-386.
[50]H. Oettel, R. Wiedemann, “Residual stress in PVD hard coatings”, Surface and Coating Technology 76-77 (1995) 265-273.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top