跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱新然
研究生(外文):hsin-jan chiu
論文名稱:不同座管高度之腳踏車運動對下肢肌群肌肉活化程度與運動學之影響
論文名稱(外文):The Effect of Different Saddle Heights on Muscle Activation and Kinematic in Cycling Exercise
指導教授:翁梓林翁梓林引用關係
指導教授(外文):Tzu-Lin Wong
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:68
中文關鍵詞:漸進式負荷座管高度腿長
外文關鍵詞:incremental workload exercisesaddle heighttrochanteric height
相關次數:
  • 被引用被引用:9
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目的:探討腳踏車運動中進行漸增式負荷測驗時,採用不同座管高度對下肢肌群活化程度與關節角度變化之影響。方法:以大專體育系學生,男8名 (年齡19.2±0.48 歲、.身高175.88±6.88 公分、體重67.5±5.01 公斤 )為受試對象。使用一部Mega speed 25k 高速攝影機(100Hz)與Biovision肌電儀(1000Hz)以同步方法擷取受試者在原地腳踏車測功儀踩踏動作。影片以Kwon3D動作分析軟體處理,經人體肢段參數建製、直接線性轉換及濾波後,取得運動學參數。肌電訊號由DASY Lab 6.0軟體分析肌群之原始肌電訊號後,進行10-500Hz的band-pass濾波處理,經全波整流上翻、10 Hz低通率波平滑化處理,並以運算功能鍵的程序處理,最後獲得 RMS 肌電訊號,並以運算功能鍵的程序處理,最後獲得 RMS 肌電訊號,踩踏動作量測後,進行MVC測試作為標準化(%MVC)處理。統計資料以SPSS 12.0中文版軟體進行單因子重複量數變異數分析(one-way ANOVA),顯著水準訂為α=.05。結果:一、在踩踏動力輸出期,髖關節、膝關節與踝關節蹠曲角度變化,隨座管高度的增加而增加,統計上達顯著差異(p<.05)。二、下肢作用肌群活化率方面,動力輸出期時,股直肌活化程度會隨著座管高度的增加,採取85%與105%座管高度在統計上達顯著差異(p<.05),腓腸肌活化程度會隨著座管高度的增加,採用85%與105%座管高度組間在統計上達顯著差異(p<.05)。在動力回復期,脛骨前肌方面:較低的座管高度其活化較頻繁,採用85%與105%座管高度組間在統計上達顯著差異(p<.05)。結論:以關節角度變化量為依據,採取105%椅座管高度在髖關節、膝關節與踝關節蹠曲角度變化量方面,可得到較大活動範圍,但採用超過腿長100%或以上的座管高度,踩踏時下肢會過度伸直,進而造成踩踏動作的不協調。若以肌電訊號為依據,採取85%椅座管高度在輸出期時,股直肌須徵召較多的運動單位才能完成運動負荷,採取105%椅座管高度時,腓腸肌活化也較頻繁。在動力回復期,採取85%椅座管高度時,脛骨前肌須徵召較多的運動單位才能完成運動負荷。綜合上述顯示,採用95%座管高度時,較能提供騎乘姿勢的順暢性與運動經濟性。

關鍵字:漸進式負荷、 座管高度、腿長。
Objective: The purpose of this study was to compare the effects of different bicycle saddle heights (85%, 95% and 105% trochanteric height) on muscle activation and joint angles during incremental test on cycling ergometer. Methods: Eight male students from the department of physical education (age, 19.2±0.48 years, height, 175.88±6.88 cm, weight, 67.5±5.01 kg) participated in this study. A Mega speed 25k high speed camera (100Hz) and Biovision EMG (1000Hz) to capture methods were synchronized by the action to come to a complete of pedaling on cycle ergometer. Video motion analysis software to Kwon3D processing, reference Dempster(1955) Body segment parameters (BSP) build, the direct linear transformation (DLT) and quantified to obtain kinematic parameters; EMG signal analysis by the Dasy Lab 6.0 software get the rectus femoris muscle, Biceps femoris long head muscle, tibialis anterior, gastrocnemius muscles of lower limbs after the original EMG, were 10-500 Hz of band-pass filtering by full-wave rectifier on the turn, 10 Hz low pass rate of wave smoothing processing, pcaculation function with the help of caculation software, obtain RMS, after the test, undertake maximum voluntary contracton test, (% MVC) for standardization. SPSS 12.0 statistical information to the Chinese version of the software for one-way repeated measures ANOVA (one-way ANOVA), the significant level set at α =. 05. Results: 1.The angles of the hip, knee and ankle joints plantarflexion increase while the saddle heights increases in the propulsive phase and there is a statistically significant differece(p<.05). 2.On muscle activation, in the propulsive phase, The degree of rectus femoralis actvation increases while the saddle height increases. There is a statistically significant difference (p<.05), between 85% and 105%. In the part of gastrocnemius muscle, at a higher saddle height, it shows more activastion. There is a statistically significant difference between 85% and 105%, statistically significant difference (p<.05). In the recovery phase, in the part of tibialis anterior, at a lower saddle height, the activation increases, There is a statistically significant difference between 85% and 105%, statistically significant difference (p<.05). Conclusion: From the view of the joint angle change, the sadddle set at 105% trochanteric height, the motion of hip joints and knee joints and the palantaflexion ankle are done in a bigger range. The saddle set at more than 100% trochanteric height, the pedaling is not smooth while the feet reaching excessively to make full extension of the pedal stroke. From the view of EMG, the saddle set at 85% trochateric height, the rectus femoralis needs to use more motion units to completethe the motion load in the propulsive phase. The saddle set at 105% trochanteric height, the activation of the gastrocnemius muscle increases. In the recovery phase, The saddle set at 85% trochateric height, the tibialis anterior needs to use more motion units to com;lete the motion load. The conclusion is when the saddle is set at 95% trochanteric height, it helps the cyclists perform with a smooth positionig and exercise eneconomy.

Keywords: incremental workload exercise, saddle height, trochanteric height
目 次
第一章 緒論……………………………………………………………………........01
第一節 問題背景………………………..………………………………………..01
第二節 研究目的……………………………..…………………………………..04
第三節 研究範圍與限制……………………..…………………………………..05
第四節 名詞操作性定義……………………..…………………………………..06

第二章 文獻探討………………………………………..............................................09
第一節 腳踏車結構與功能………………...………………………………..…...09
第二節 腳踏車騎乘姿勢對騎乘者之生物力學影響……..……………………..12
第三節 腳踏車踩踏頻率對騎乘者之生物力學影響………..…………………..17
第四節 表面肌電圖的相關研究……………………………..…………………..18
第五節 文獻總結……………………………………………..…………………..21

第三章 研究方法與步驟……………………………………………………………22
第一節 研究架構……………………………………………..…………………..22
第二節 實驗對象…………………………………………..……………………..23
第三節 實驗時間與地點……………………………………..…………………..23
第四節 實驗儀器與設備……………………………………..…………………..24
第五節 實驗場地與佈置…………………………………………..……………..28
第六節 實驗方法與步驟…………………………………………..……………..30
第七節 資料收集與處理……………………………………………..…………..36
第八節 統計方法………………………………………...…………..…………..38

第四章 結果…………………………………………………………………………39
第一節 不同座管高度在踩踏動作對下肢各關節角度之運動學參數分析…....39
第二節 不同座管高度在踩踏動作下肢肌群肌電圖分析…………….…….…..44
第三節 不同座管高度在踩踏動作運動學與下肢肌群肌電訊號特性分析…....52

第五章 討論…………………………………………………………………………56
第一節 不同座管高度在踩踏動作對下肢各關節角度之運動學參數的影響....56
第二節 不同座管高度在踩踏動作之下肢肌群肌電參數的影響………..……..58
第三節 綜合討論…………………………………………………………………59

第六章 結論與建議……………………………………………..…………………..61
第一節 結論…………………………………………………..………..…………61
第二節 建議……………………………………………..……………..…………61

參考文獻………………………………………………...…..…………………….......62
一、中文部分……………………………………………..………………………..62
二、外文部分…………………………………...…………………….…………….63








表 次
表 3-1 受試者基本資料表…………………………………………………………..23
表 3-2 表面肌電圖電極片黏貼的位置……………………………………………..33
表 4-1 不同座管高度髖關節角度統計分析摘要表………………………………..39
表 4-2 不同座管高度膝關節角度統計分析摘要表………………………………..41
表 4-3 不同座管高度踝關節角度統計分析摘要表………………………………..42
表 4-4 不同座管高度軀幹前傾角度統計分析摘要表…………………………..…43
表 4-5 不同座管高度在踩踏動作標準化股直肌均方根肌電振幅統計摘要表…..46
表 4-6 不同座管高度在踩踏動作標準化股二頭肌均方根肌電振幅統計摘要表..47
表 4-7 不同座管高度在踩踏動作標準化脛骨前肌均方根肌電振幅統計摘要表..49
表 4-8 不同座管高度在踩踏動作標準化腓腸肌均方根肌電振幅統計摘要表…..50














圖 次
圖 1-1 座管高度圖……………………………………………………..…………. 06
圖 1-2 腿長測量圖……………………………………………………...………….06
圖 1-3 踩腳踏車之膝關節角度與踝關節角度變化………………………………07
圖 1-4 軀幹角度示意圖……………………………………………………………08
圖 1-5 各關節角度位置圖…………………………………………….………..….08
圖 2-1 自由車基本結構系統圖……………………………………………………10
圖 2-2 自由車踩踏動作最佳膝關節與踝關節角度……………………………....13
圖 2-3 每次踩踏間的各肌肉活化週期與次序……………………………………20
圖 3-1 研究架圖……………………………………………………………………22
圖 3-2 Mega Speed 25k高速攝影機……………………………………………… 24
圖 3-3 Kwon 3D動作分析座標架示意圖………………………...………….……24
圖 3-4 反光球…………………………………...………………………………….25
圖 3-5 肌電儀及相關儀器……………………………..……………………..……25
圖 3-6 表面電極片、刮鬍刀及酒精棉片…………………………………………26
圖 3-7 原地腳踏車運動測功儀………….………………….……………….….…27
圖 3-8 同步啟動裝置………………….….…………………………………..……27
圖 3-9 實驗場地與儀器佈置圖……………………………………………………29
圖 3-10 漸增負荷運動測驗流程圖…………………………………………………31
圖 3-11 同步控制器之訊號方形波標記…………………………………………....32
圖 3-12 股直肌、股二頭肌、脛骨前肌、腓腸肌電極片黏貼位置圖……………34
圖 3-13 實驗流程圖………………………………………………………...….……35
圖 3-14 股直肌MVC施測圖實驗流程圖…………………………………….……37
圖 3-15 股二頭肌MVC施測圖……………………………………………….……37
圖 3-16 脛骨前肌MVC施測圖……………………………………………….……38
圖 3-17 腓腸肌MVC施測圖………………………………………………….……38
圖 4-1 不同座管高度於踩踏動作之髖關節角度變化圖……..…………...….……40
圖 4-2 不同座管高度於踩踏動作之膝關節角度變化圖…………..……...….……42
圖 4-3 不同座管高度於踩踏動作之踝關節蹠屈角度變化圖………….....….……43
圖 4-4 不同座管高度於踩踏動作之軀幹前傾角度變化圖……………..….……...44
圖 4-5 不同座管高度在踩踏動力輸出期下肢肌電訊號變化圖……..……....……45
圖 4-6 不同座管高度在踩踏動力回復期下肢肌電訊號變化圖………………..…45
圖 4-7 不同座管高度在輸出期標準化股直肌均方根肌電振幅統計圖…..….…...46
圖 4-8 不同座管高度在回復期標準化股直肌均方根肌電振幅統計圖..................47
圖 4-9 不同座管高度在踩踏輸出期之標準化股二頭肌均方根肌電振幅統計圖..48
圖 4-10 不同座管高度在踩踏回復期標準化股二頭肌均方根肌電振幅統計圖....48
圖 4-11 不同座管高度在輸出期之標準化脛骨前肌均方根肌電振幅統計圖……49
圖 4-12 不同座管高度在回復期之標準化脛骨前肌均方根肌電振幅統計圖……50
圖 4-13 不同座管高度在輸出期之標準化腓腸肌均方根肌電振幅統計圖………51
圖 4-14 不同座管高度在回復期之標準化腓腸肌均方根肌電振幅統計圖………51
圖 4-15 採用85%座管高度在踩踏動作中之生物力學相關參數圖…...……….…53
圖 4-16 採用95%座管高度在踩踏動作中之生物力學相關參數圖…..…….….…54
圖 4-17 採用105%座管高度在踩踏動作中之生物力學相關參數圖…………..…55
yography (5th ed.). Baltimore: Williams & Wilkins.
Bigland-Ritchie, B. (1981). Force/force and fatigue of human voluntary contractions. Exercise and Sport Sciences Reviews, 9, 75 - 117.
Bohlmann, J. T. (1981). Injuries in competitive cycling. Physician Sportsmed, 9(5), 117-124.
Borg, G. A. (1982). Psychophysical Bases of Perceived Exertion. Medicine and Science in Sports and Exercise, 14 (5), 377-381.
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2005). Exercise physiology: Human bioenergetics and its applications (4th ED.). Columbus: McGraw-hill Higher Education.
Cavanagh, P.R. & Sanderson, D.J. (1986). The biomechanics of cycling: studies of the pedaling mechanics of elite pursuit riders. In E.R. Burke, Science of cycling, Human Kinetics Publishers, Champaign, pp 91-122.
Conwit, R.A., Stashuk, D., Tracy, B.L., McHugh, M., Brown, W.F., & Metter, E,J. (1999). The relationship of motor unit size, firing rate, and force. Clinical Neurophysiology, 110(7), 1270-1275.
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857–865.
Ericson, M. O., Nisell, R. (1987). Patellofemoral joint forces during ergonomic cycling. Phys. Ther, 67: 1365-1369.
Francis, P. R. (1986). ÔInjury prevention for cyclists: a biomechanical approachÕ In E. R. Burke, Science of Cycling, Human Kinetics Publishers, Champaign, pp 145-184.
Fridlund, A. J., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23, 567-589.
Gregor, R. J., & Rugg, S. G. (1986). Effects of saddle height and pedaling cadence on power output and efficiency. In E. R. Burke (Ed.), Science of cycling, 69-90.
Hagberg, J., & McCole, S. (1990). The effect of drafting and aerodynamic equipment on energy expenditure during cycling. Cycling Science, 2(3), 19-22.
Hansen, E. A., Waldeland, H., & Hallen, J. (2007). Seated-standing transition intensity in uphill cycling. Journal of Biomechanics, 40(S2), S193.
Hasson, C. J., Caldwell, G. E., & Emmerik, R. E. A. V. (2008). Changes in
muscle and joint coordination in learning to direct forces. Human
Movement Science, 27(4), 590-609.
Hazel, M. C. & Jacques, H., (2000). Musculoskeletal Assessment Joint Range of Motion and Manual Muscle Strength. 351 west garden street Baltimore. Maryland 21201-2436 USA.
Jorge, M., & Hull, M. L. (1986). Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanicsc, 19 , 683-694.
Kyle, C. R. (1989). The aerodynamics of helmets and handlebars. Cycling Science, 1(4), 22-25.
Lippold, O.C.J. (1982). The relationship between integrated action potentials in a human muscle and its isometric tension. Journal of Physiology, 177, 492-499.
Matheny, F. (1992). Finding perfect saddle height. Bicycling, 33(4), 108-110.
Mestdagh, K.V. (1998). Personal perspective: in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334.
Moritani, T. & Muro, M. (1987). Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. European Journal of Applied Physiology and Occupational Physiology, 56, 260-265.
Neptune, R. R., Kautz, S. A., & Hull, M.L. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051–1058.
Nordeen, S. K. (1988). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Med Sci Sports. Summer; 9(2): 113-7.
Nptunee, R. R., & Hull, M. L. (1999). A theoretical analysis of preferred pedaling rate selection in endurance cycling. Journal of Biomechanics, 32(4), 409-415.
Perotto, O.A., (1994). Anatomical guide for the electromyographer: the limbs and trunk., (3rd ed.). Springfield,Ill.: Blackwell.
Perry, S. R., Housh, T. J., Johnson, G. O., Ebersole, K. T., Bull, A. J., Evetovich, T.K., & Smith, D. B. (2001). Mechanomyography, electromyography, heart rate , and atings of perceived exertion during incremental cycle ergometry . Journal of Sports Medicine and Physical Fitness, 41, 183-188.
Petitjean, M., Maton, B., & Cnockaert, J.C. (1992). Evaluation of human dynamic contraction by phonomyography. Journal of Applied Physiology, 73(6), 2567-2573.
Rosecrance, J. C., Giuliani, C. A. (1991). Kinematic analysis of lower- limb movement during ergometer pedaling in hemiplegic and nonhemiplegic subjects . Phys Ther, 71 (4) : 334-343.
Price, D. & Donne, B. (1997). Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man. Journal of sports Sciences. 15(4), 395-402.
Sanderson, D. J., Martin, P. E., Honeyman, G., & Keefer, J. (2006). Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 16(6), 642–649.
Scott, T. (1994). Scott Tinley’s Winning Guide to Sports Endurance-How to maximize speed, strength & stamina.
Stokes, M.J., & Cooper, R.G. (1992). Musc1e sounds during voluntary and stimulated contractions of the human adductor po1lich muscle. Journal of Applied Physiology, 72, 1908-1913.
Stokes, M.J. & Dalton P.A. (1991a). Acoustic myographic activity increases linearly up to maximal voluntary isometric force in the human quadriceps muscle. Journal of Neurological Science, l0l, 163-167.
Szal, S. E., & Schoene, R. B. (1989). Ventilatory response to rowing cycling in elite oarswomen. Journal of Applied Physiology, 67, 264-269.
Takaishi, T., Yasuda, Y., Ono, T., & Moritani, T. (1996). Optimal pedaling rate estimated from neuromuscular fatigue cyclists. Medicine and Science in Sports and Exercise, 28(12), 1492–1497.
Zwarts, M.J., & Keidel, M. (1991). Relationship between electrical and vibratory output of muscle during voluntary contraction and fatigue. Muscle & Nerve, 14, 756-761.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top