跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐吉
研究生(外文):Patrick Adrian S. Conge
論文名稱:使用列位像素合成之低光源互補式金氧半影像感測器
論文名稱(外文):Column Level Binning of CMOS Image Sensor for Low-Light Imaging
指導教授:黃弘一
指導教授(外文):Hong-Yi Huang
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
語文別:英文
論文頁數:91
外文關鍵詞:correlated double samplingramp generatorbinningpixel averagingsingle slope ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
This work presents a column level binning circuit for a CMOS image sensor for the purpose of low-light imaging. A 2 x 2 kernel pixel binning (averaging) is employed in this design reducing the spatial resolution to 1/4 of the original size and every two columns of the pixel array share one binning circuit. The output signal of each pixel is sampled unto the binning circuit basically composed of two adjacent correlated double sampling circuit averaged by means of a row average switch. A 0.18μm TSMC process was used to simulate the circuit and simulation results reveal a kernel averaging error of less than or equal to 2% for low-light conditions with a power consumption of 123.9μW.

The ADC was designed using a single-slope A/D conversion topology with a simple circuit structure to effectively reduce area and power consumption. The designed ADC was compatible for both non-binning mode and binning mode. It has a correlated double sampling stage to eliminate fixed-pattern noise and extract the photoelectric data by subtracting the reset and signal values from the pixel or the averaged signal values from binning circuit. FFT simulation results reveal an ENOB of 7.3 bits for typical condition (TT, 55oC), a power consumption of 128.5μW per column ADC array and a power consumption of 258.4μW for the binning circuit and its output incorporated with two column ADCs. The frame rate for the CMOS image sensor is 84 fps.
TABLE OF CONTENTS

Acknowledgment…………………………………………………………i
Abstract....................................................................................................iv
Table of Contents……………………………………………………..vi
List of Figures……………………………………………………………ix
List of Tables……………………………………………………………xiii

Chapter 1: Introduction…………………………………………………….1
1.1 Background………………………………………………………..1
1.2 Motivation…………………………………………………………2
1.3 Thesis Organization………………………………………………..3

Chapter 2: Background and Overview……………………………………..4
2.1 CCD vs CMOS……………………………………………………4
2.1.1 Responsitivity……………………………………………….4
2.1.2 Dynamic Range……………………………………………..5
2.1.3 Uniformity…………………………………………………..5
2.1.4 Speed………………………………………………………..6
2.1.5 Windowing………………………………………………….6
2.1.6 Anti-blooming………………………………………..…….6
2.1.7 Biasing and Clocking………………………………………..6
2.2 CMOS Image Sensor Concept and Architecture………………….7
2.2.1 Pixel Array…………………………………………………..7
2.2.1.1 Passive Pixel………………………………………….8
2.2.1.2 Photodiode Active Pixel………………………………8
2.2.1.3 Photogate Active Pixel………………………….……9
2.2.2 Analog Signal Processing………………………………….10
2.2.2.1 Fixed Pattern Noise (FPN)…………………………..10
2.2.2.2 Correlated Double Sampling………………………...11
2.2.2.3 Double Delta Sampling………………..................….12
2.2.3 Readout Methods…………………………………………..13
2.2.3.1 CCD Image Sensor………………………………….13
2.2.3.2 CMOS Image Sensor………………………………..14
2.2.4 ADC Architectures…………………………….…………...15
2.2.4.1 Single Slope ADC……………………………..…….16
2.2.4.2 Frame Rate…………………………………………..18
2.3 Binning in CMOS Technology……………………………….….19

Chapter 3: Binning Circuit……………………………………….……….22
3.1 Pixel Architecture……………………………………………….22
3.2 Non-binning Mode………………………………...…………….26
3.3 Binning Mode…………………………………...……………….27
3.3.1 Sample and Hold……………………………….………….27
3.3.2 Charge Injection………………………………...………….28
3.3.3 Pixel Averaging…………………………………………….30
3.3.4 Signal Generation for Binning Circuit……………….…….40
3.3.5 Simulation for Binning Operation……………………...….43

Chapter 4: Single Slope ADC with CDS…………….. …………………..50
4.1 Ramp Generator………………………………………………….50
4.1.1 Adaptive Ramp Generation……………………………….53
4.1.2 Two-Stage Operational Amplifier…………….……….….54
4.2 Correlated Double Sampling …………………………………....58
4.3 Comparator………………………………………………..……..63
4.4 Multistage Comparator…………………………………………..65
4.5 Buffer/Quantizer………………………………………………....68
4.6 10-bit Synchronous Counter………………………………….….69
4.7 Static Latch………………………………………...…………….71
4.8 Shift Register…………………………………………………….72
4.9 Current Reference………………………………………….…….74
4.10 Signal Generation for ADC…………………………….……….76
4.11 ADC FFT Simulation………………………………...………….79

Chapter 5: Conclusion and Future work…………………………………. 85
5.1 Conclusion……………………………………………………......85
5.2 Future work………………………………………………………86

References…………...……………………………………………………87













LIST OF FIGURES

Figure 2.1a Passive pixel architecture……….……...………...……………9
Figure 2.1b Photodiode active pixel architecture……...……...……………9
Figure 2.1c Photogate active pixel architecture………....…………………9
Figure 2.2 Correlated double sampling method………....………..………11
Figure 2.3 Double delta sampling method………...…..…………….……12
Figure 2.4a CCD image sensor readout scheme……….....……………….14
Figure 2.4b CMOS image sensor readout scheme……..…...….…………14
Figure 2.5a ADC integration in pixel………...………...…….……...……16
Figure 2.5b ADC integration per column……………….…...……………16
Figure 2.5c ADC integration per chip……….........................……………16
Figure 2.6 Single slope ADC..………...…………………………..………18
Figure 2.7 Single slope ADC operation………...…………………………18
Figure 2.8 Multiple binning architectures………...……...…………….…20
Figure 2.9a CMOS binning techniques Frame transfer…...………………21
Figure 2.9b CMOS binning techniques Column level…...………………21
Figure 3.1a 4T pixel architecture………………………….………………22
Figure 3.1b 4T pixel equivalent circuit…………………...………………22
Figure 3.2a 4T pixel operation reset mode..................................................23
Figure 3.2b 4T pixel operation transfer mode.............................................23
Figure 3.3 4T pixel equivalent circuit for simulation..................................25
Figure 3.4a Non-binning mode 1st row readout……….......…..………..…26
Figure 3.4b Non-binning mode 2nd row readout………....………….……26
Figure 3.4c Non-binning mode column-level implementation...…………26
Figure 3.5a Sample and hold circuit………...………….……....…………27
Figure 3.5b S/H charge injection………...…………………….……….…27
Figure 3.6a SC model of a 2x2 pixel averaging…………….….…………31
Figure 3.6b Row banks for 2x2 pixel averaging………………...………31
Figure 3.6c Timing sequence………..…………………………...……..…31
Figure 3.7a Spatial resolution without binning………...………..…..……32
Figure 3.7b Spatial resolution with binning………...………….…………32
Figure 3.8a Binning mode 1st row readout………...…………..…….……33
Figure 3.8b Binning mode 2nd row readout………....………….…………33
Figure 3.8c Binning mode after binning process………...…….…………33
Figure 3.8d Binning mode column-level implementation……...…………33
Figure 3.9a Binning S/H model transistor level ………………...…..……34
Figure 3.9b Binning S/H model when SW1 turns on. ………...……….…34
Figure 3.10a Analog buffer schematic……………………………….……35
Figure 3.10b Analog buffer bulk connected to Vdd……...…...……..……35
Figure 3.10c Analog buffer bulk connected to source………..…...………35
Figure 3.11a Analog buffer with S/H bulk to Vdd……...…...……………36
Figure 3.11b Analog buffer with S/H bulk to its source……..……………36
Figure 3.12 Binning circuit……….........…………………..…………..…37
Figure 3.13 Timing sequence for binning circuit………...….……………38
Figure 3.14 Signal generation for Csel, Crst and Csig………...……….…41
Figure 3.15 Signal generation for Ca and Rca………...…….……………41
Figure 3.16 Signal generation for Ra, Sr1, Ss1, Sr2, Ss2 and Rsh…..…....42
Figure 3.17 Generated timing sequence for the binning circuit..…………42
Figure 3.18 Timing sequence for the binning circuit……….………….…43
Figure 3.19 Binning output comparison for low-light level……...…….…48
Figure 3.20 Binning circuit comparison for adjacent columns………...…48
Figure 3.21 Binning circuit layout…...………………………………...…49
Figure 4.1 Block diagram of the CDS/SS ADC………...…………….…..50
Figure 4.2 Basic principle of ramp generation………...…………….....…51
Figure 4.3 Basic ramp generator………...……………………………..…52
Figure 4.4 Basic ramp generator output with process variation………..…52
Figure 4.5 Adaptive ramp generator………..…...………….………..…..53
Figure 4.6 Two-stage operational amplifier ………...………………....…55
Figure 4.7 Two-stage operational amplifier (TT) ………...…………....…55
Figure 4.8 Adaptive ramp voltage generation………...………………......57
Figure 4.9 Adaptive ramp generator output with process variation….…...58
Figure 4.10 Correlated double sampling stage………...…………..……...59
Figure 4.11 Reset sampling phase………...………………………………59
Figure 4.12 Signal sampling phase………...……………………..…….…60
Figure 4.13 Ramping phase………...…………………………………..…60
Figure 4.14 CDS for non-binning and binning………...…………….……61
Figure 4.15 CDS for non-binning mode………...…………………..….…62
Figure 4.16 CDS for binning mode………...………………….….………62
Figure 4.17 Comparator………...………………………………….…..…63
Figure 4.18 Comparator gain and bandwidth...…………………………65
Figure 4.19 Multistage comparator to eliminate charge injection errors…66
Figure 4.20 Three-stage fully differential multistage comparator……...…66
Figure 4.21 Multistage comparator timing sequence………...….…...…...67
Figure 4.22 Three-stage comparator output………...……………………68
Figure 4.23 Buffer/Quantizer………...…………...................................…69
Figure 4.24 Buffer/Quantizer operation………...………………………69
Figure 4.25 A 10-bit synchronous counter………...……………..….……70
Figure 4.26 10-bit synchronous counter operation………...……………...70
Figure 4.27 Negative edge triggered static latch………...…………….….71
Figure 4.28 Negative edge triggered static latch operation………...…..…72
Figure 4.29 Parallel to serial shift register………...……………………...73
Figure 4.30 Parallel to serial shift register operation………...…………...74
Figure 4.31 Constant-gm current reference circuit………...…………..…75
Figure 4.32 Signal generation for Rst1, Sd and Rstc………...…………...77
Figure 4.33 Signal generation for Rst2, Rst3, Step and Stepb………..…..77
Figure 4.34 Signal generation for Srp and Srpb………...………….……..78
Figure 4.35 Signal generation for Sorp and Rstsr………...………………78
Figure 4.36 Generated timing sequence for the ADC circuit………..……79
Figure 4.37 SNR FFT plot (SS, 85oC) ………...……………………….…83
Figure 4.38 SNR FFT plot (TT, 55oC) ………...………………….………83
Figure 4.39 SNR FFT plot (FF, 27oC) ………...………………….………84
Figure 4.40 Single Slope CDS Stage Layout….………………….………84
[1]E. R. Fossum, “Active Pixel Sensors – Are CCD dinosaurs?”, CCD’s and Optical Sensors III, Proc. SPIE, 1993, Vol. 1900, pp. 2-14.

[2]E. R. Fossum, “CMOS Image Sensors: Electronic camera-on-a-chip”, IEEE Trans. on Electron Devices, Vol. 44, pp. 1689-1698, Oct. 2001.

[3]S. E. Kemeny, R. Panicacci, B. Pain, L. Matthies and E. R. Fossum, “Multiresolution Image Sensor”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 7, No. 4, August 1997.

[4]Z. Zhou, B. Pain and E. R. Fossum “Frame-Transfer CMOS Active Pixel Sensor with Pixel Binning”, IEEE Trans. on Electron Devices, Vol. 44, No. 10, Oct. 1997.

[5]J. Coulombe, M. Sawan, C. Wang, "Variable resolution CMOS current mode active pixel sensor", Circuits and Systems, 2000. Proc. ISCAS 2000 Geneva. The 2000 IEEE International Symposium vol.2, no., pp.293-296 vol.2, 2000.

[6]D. Litwiller, “CCD vs CMOS: Facts and Fiction”, Photonics Spectra, Laurin Publishing Co. Inc., Jan. 2001.

[8]M. Bigas, E. Cabruja, J. Forest and J. Salvi, “Review of CMOS Image Sensors”, Elsevier Microelectronics Journal 37, Sep. 2005.


[7]A. E. Gamal and H. Eltoukhy, “CMOS Image Sensor”, IEEE Circuits and Devices Magazine, 2005.

[9]R. H. Nixon, S. E. Kemeny, B. Pain, C. O. Staller and E. R. Fossum, “256x256 CMOS Active Pixel Sensor Camera-on-a-Chip”, IEEE J. of Solid-State Circuits, Vol. 31, No. 12, Dec. 1996.

[10]Y. Degerli, F. Lavernhe, P. Magnan and J. Farre, “Non-Stationary Noise Responses of Some Fully Differential On-Chip Readout Circuits Suitable for CMOS Image Sensors”, IEEE Trans. on Circuits and Systems – II: Analog and Digital Signal Processing, Vol. 46, No. 12, Dec 1999.

[11]S. K. Mendis, S. E. Kemeny, R.C. Gee, B. Pain, C. O. Staller, Q. Kim and E. R. Fossum, “CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems”, IEEE J. of Solid-State Circuits, Vol. 32, No. 2, Feb. 1997.

[12]T. Sugiki, S. Ohsawa, H. Miura, M. Sasaki, N. Nakamura, I. Inoue, M. Hoshino, Y. Tomizawa, T. Arakawa, “A 60mW 10b CMOS Image Sensor with Column-to-Column FPN Reduction”, Solid-State Circuits Conference Digest of Technical Papers, 2000.

[13]K. B. Cho, A. I. Krymski, E. R. Fossum, “A 1.5-V 550-μW 176 × 144 Autonomous CMOS Active Pixel Image Sensor”, IEEE Trans. on Electron Devices, vol. 50, no. 1, Jan. 2003.


[14]S. Decker, R. D. McGrath, K. Brehmer, C. G. Sodini, “A 256×256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column-Parallel Digital Output”, IEEE J. of Solid-State Circuits, vol. 33, no. 12, Dec. 1998.

[15]W. Yang, O. B. Kwon, J. Lee, G. T. Hwang, S. J. Lee, “An Integrated 800×600 CMOS Imaging System,” ISSCC IEEE Digest of Technical Papers, pp. 304-305, 1999.

[16]S. K. Mendis, S. E. Kemeny, and E. R. Fossum, “128x128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems”, IEEE IEDM Digest of Technical Papers., December 1993.

[17] M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa and J. H. Huijsing, “A CMOS Imager with Column-Level ADC using Dynamic Column Fixed Pattern Noise Reduction”, IEEE J. of Solid-State Circuits, Vol. 41, No. 12, Dec. 2006.

[18]M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa and J. H. Huijsing, “Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image Sensors”, IEEE J. of Solid-State Circuits, Vol. 42, No. 12, Dec. 2007.

[19]F. Azais, S. Bernard, Y. Bertrand, X. Michel and M. Renovell, “A Low-Cost Adaptive Ramp Generator for Analog BIST Applications”, VLSI Test Symposium, 19th IEEE Proceedings, VTS 2001.


[20]O. B. Milgrome, S. A. Kleinfelder and M. E. Levi, “A 12-bit Analog to Digital Converter for VLSI Applications in Nuclear Science”, IEEE Trans. on Nuclear Science, Vol. 39, No. 4, 1992.

[21]J. Cheon and G. Han, “Noise Analysis and Simulation Method for a Single-Slope ADC with CDS in a CMOS Image Sensor”, IEEE Trans. on Circuits and Systems, Vol. 55, No. 10, Nov. 2008.

[22]S. Decker, D. McGrath, K Brehmer, C. Sodini, "A 256×256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column-parallel Digital Output", IEEE J. of Solid-State Circuits, vol.33, no.12, pp.2081-2091, Dec 1998.

[23]J. Doernberg, P. R. Gray and D. A. Hodges, “A 10-bit 5-Msample/s CMOS Two-Step Flash ADC”, IEEE J. of Solid-State Circuits, Vol. 24, No. 2, Apr. 1989.

[24]B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill, 2001.

[25]B. Razavi and B. A. Wooley, “Design Techniques for High-Speed, High-Resolution Comparators”, IEEE J. of Solid-State Circuits, Vol. 27, No. 12, Dec. 1992.

[26]D. J. Allstot, “A Precision Variable-Supply CMOS Comparator”, IEEE J. of Solid-State Circuits, Vol. SC-17, No. 6, pp. 1080-1087, Dec. 1982.

[27]D. A. Johns and K. Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, Inc. 1997.

[28]A. Nilchi, J. Aziz, R. Genov, "Focal-Plane Algorithmically Multiplying CMOS Computational Image Sensor," IEEE J. of Solid-State Circuits, vol.44, no.6, pp.1829-1839, June 2009.

[29]“Parallel-to-Serial Shift Register” http://www.play-hookey.com/digital/shift-out_register.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top