(3.238.186.43) 您好!臺灣時間:2021/02/28 11:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:田玲嘉
研究生(外文):Lin-Chia Tien
論文名稱:應用SCM於奈米碳管之振動分析
論文名稱(外文):Vibration Analysis of Carbon Nanotubes by Using SCM
指導教授:吳賴雲
指導教授(外文):Lai-Yun Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:楔形配點法單壁奈米碳管自由振動自然頻率數值分析
外文關鍵詞:SCMsingle-walled nanotubesfree vibrationnatural frequencynumerical analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  SCM(Spline Collocation Method)是由Forward Difference 所推導之Spline function,並配合節點佈置(Collocation)的方式,所發展出的一種數值方法;再由各階之Spline function 整理製作出完整的B Spline Value Table,使得在使用SCM 此法分析時,得以用查表的方式大大簡化計算過程,並有系統的編寫電腦程式,得以迅速且方便地求解。
  本文研究主旨在以SCM (Spline Collocation Method) 延伸發展之MSCM(Modified Spline Collocation Method),應用在求解單壁奈米碳管的自由振動問題,分析其自然振動頻率,亦導入各種不同組合的邊界條件,並增加所取的節點數,觀察其振動頻率與對應之模態,也得以驗證奈米碳管是一個作為超高頻感應器、螺線管或共振器之最佳材料。
  最後,以實例利用SCM進行數值分析,將分析結果與數學上的解析解及其它數值分析方法所得之數值解相互比較,以驗證由SCM所得解之誤差能達到工程上所要求的範圍之內,顯示出SCM 確有其優勢所在,是一種準確、快速、便利且可應用的數值方法,值得作進一步之應用分析研究。

SCM(Spline Collocation Method) is a numerical analysis method originating from Spline function which is derived from Forward Difference, and also joining the idea of knot-collocating together. By means of developing B Spline Value Table from differential Spline function in various orders, the calculating process can be simplified greatly by simply looking up to the table. Furthermore, it can be used in computer programming in a systematic way. Therefore it becomes much more rapid and convenient when analyzing by using SCM.
The purpose of this thesis is to apply MSCM(Modified Spline Collocation Method) which is extended from SCM (Spline Collocation Method) to solve free vibrating problem of single-walled carbon nanotubes to obtain the natural frequency of the system being analyzed. Also, by leading in different combinations of boundary conditions, increasing the numbers of knots, observe the vibrating frequency and corresponding model shape. As for carbon nanotubes, it is clearly illustrated in this thesis that it is a perfect material for the development of ultrahigh frequency sensors, actuators and resonators due to exceptionally high stiffness, high strength and large aspect ratio.
At last, results from each example analyzed by SCM will be utilized to compare with theoretical solution derived from Euler-Bernoulli beam model and analytic solution by using other numerical method. Thus it can be verified that the error conducted by SCM is within the standard range of engineering field. It is demonstrated that SCM has its superiority as being one kind of accurate, fast, convenient and applicable numerical method; hence it is indeed worth doing further research.

口試委員會審定書i
誌謝ii
中文摘要iii
英文摘要iv
目錄vi
圖目錄viii
表目錄xi
第一章 緒論1
1.1 研究動機與目的1
1.2 文獻回顧與研究方法3
1.3 研究內容5
1.4 論文架構6
第二章 SCM基礎理論介紹7
2.1 SCM理論介紹7
2.2 SCM理論推導…9
2.3 MSCM理論推導16
2.4 SCM的符號規定19
2.6 SCM求解過程介紹20
第三章 奈米碳管基本性質介紹21
3.1 奈米碳管的性質21
3.2 奈米碳管的備制24
3.3 奈米碳管的應用25
第四章 SCM應用於奈米碳管之自由振動理論推導26
第五章 實例分析29
5.1 單壁奈米碳管之自由振動實例分析29
5.2 不同管徑及長徑比之單壁奈米碳管自由振動實例分析60
第六章 結論與未來展望69
6.1 結論69
6.2 未來展望71
參考文獻72
附錄A Forward Difference Method介紹75
附錄B 奈米碳管直徑推導78
附錄C 奈米碳管彎曲振動控制方程式之推導80
附錄D 自然頻率與振態精確解之推導82

[1] S. Iijima,1991, “Helical Microtubules of Graphitic Carbon”, Nature, Vol. 354, 56-58.
[2] R. Bellman and J. Casti, 1971, “Differential Quadrature and Long-term Integration”, Journal of Mathematical Analysis and Applications, Vol. 34, 235-238.
[3] S.K. Jang, 1987, “Application of Differential Quadrature to Static Analysis of Structural Components”, PhD dissertation, The Univ. of Oklahoma, Norman, Okla.
[4] C.W. Bert, A.G. Striz and W. Chen, 1994, “Static Analysis of Structures by the Quadrature Element Method”, Int. J. Solids Structures, Vol. 31, No. 20, 2807-2818.
[5] C.W. Bert and A.G. Striz, 1989, “Application of Differential Quadrature to Static Analysis of Structural Components”, Int. J. Numerical Methods in Engrg, Vol. 28, 561-577.
[6] C.N. Chen, 2000, “Vibration of Prismatic Beam on an Elastic Foundation by the Differential Quadrature Element Method”, Computers and Structures, Vol. 77, 1-9.
[7] P.M., Prenter, 1975, “Splines and Variational Methods”, John Wiley & Sons, Inc., New York, N.Y.
[8] C.W. Bert and Youngkwang Sheu, 1996, “Static Analysis of Beams and Plates by Spline Collocation Method”, Journal of Engineering Mechanics, Vol. 122(4), 375-378.
[9] M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson, 1996, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes”, Nature, Vol. 381, 678-680.
[10] J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stӧckli, N.A. Burnham and L. Forrό, 1999, “Elastic and Shear Moduli of Single-walled Carbon Nanotube Ropes”, Phys. Rev. Lett., Vol. 82, 944-947.
[11] M. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, 2000, “Strength and Breaking Mechanism of Multi-walled Carbon Nanotubes under Tensile Load”, Science, Vol. 287, 637-640.
[12] S. Iijima, C. Brabec, A. Maiti and J. Bernholc, 1996, “Structural Flexibility of Carbon Nanotubes”, Journal of Chemical Physics, Vol. 104, 2089-2092.
[13] B.I. Yakobson, M.P. Campbell, C.J. Brabec and J. Bernholc, 1997, “High Strain Rate Fracture and C-chain Unraveling in Carbon Nanotubes”, Computational Materials Science, Vol. 8, 341-348.
[14] T.C. Chang and H.J. Gao, 2003, “Size-dependent Elastic Properties of a Single-walled Carbon Nanotubes via a Molecular Mechanics Model”, Physics of Solids, Vol. 51, 1059-1074.
[15] J. Tersoff, 1992, “Energies of Fullerenes”, Phys. Rev. B, Vol. 46, 15546-15549.
[16] B.I. Yakobson, C.J. Brabec and J. Bernholc, 1996, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Range”, Phys. Rev. Lett., Vol. 76, 2511-2514.
[17] Jian Ping Lu, 1997, “Elastic Properties of Carbon Nanotubes and Nanoropse”, Phys. Rev. Lett. Vol. 79, 1297-1300.
[18] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos and M.M.J. Treacy, 1998, “Young’s Modulus of Single-walled Nanotubes”, Phys. Rev. B, Vol. 58, 14013-14019.
[19] Chunyu Li and Tsu-Wei Chou, 2003, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes”, International Journal of Solids and Structures, Vol. 40, 2487–2499.
[20] Der Ho Wu, Wen Tung Chien, Cheng Sheng Chen, Hsin Hua Chen, 2005, “Resonant Frequency Analysis of Fixed-free Single-walled Carbon Nanotube-based Mass Sensor”, Sensors and Actuators A, Vol. 126, 117-121.
[21] Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R. Dai and Z.W. Pan, 2001, “Mechanical and Electrostatic Properties of Carbon Nanotubes and Nanowires”, Materials Science and Engineering C, Vol. 16, 3-10.
[22] Usik Lee, Hyukjin Oh and Sungjun You, 2007, “Natural Frequencies of Single-walled Carbon Nanotubes”, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.
[23] Chunyu Li and Tsu Wei Chou, 2003, “Single-walled Carbon Nanotubes as Ultrahigh Frequency Nanomechanical Resonators”, Physical Review B, Vol. 68, 073405-073407.
[24] R. Saito et al., 1998, “Physical Properties of Carbon Nanotubes”, Imperial College Press.
[25] 李宗隆,民國94年,單壁碳奈米管之結構,奈米通訊,第12卷,第3期,第60-71頁。
[26] 吳兆民,民國95年,應用SCM於梁振動之分析,碩士論文,吳賴雲、鍾立來教授指導,國立台灣大學土木工程學研究所。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔