(44.192.112.123) 您好!臺灣時間:2021/03/09 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林正偉
研究生(外文):Cheng-Wei Lin
論文名稱:以原子尺度模擬探討生物分子吸附於矽奈米線的能帶變化與導電機制
論文名稱(外文):Band structure and conductivity mechanism of bio-molecules binding on silicon nanowire
指導教授:陳俊杉陳俊杉引用關係
指導教授(外文):Chuin-Shan Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:69
中文關鍵詞:生物感測器場效應電晶體矽奈米線鍵結分子閘極電壓
外文關鍵詞:biosensorfield effect transistorsilicon nanowirebinding moleculesgate voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽奈米線場效應電晶體作為生物感測器具有高靈敏度、即時偵測、高重現性、無標記檢測和運用現今發展成熟的微機電製程等優點,近年來越來越受到重視。如果能夠說明場效應電晶體的閘極效果,和矽奈米線鍵結分子的行為,將能夠讓我們更了解生物感測器背後的機制。

本研究使用密度泛函理論,以ATK這套軟體計算閘極的影響和鍵結分子的行為,使用三種模型:氫鈍化矽(100)奈米線、氫鈍化矽(100)奈米線施加閘極電壓和氫鈍化矽(100)奈米線鍵結分子,分別分析其傳送頻譜、態密度、傳送比例和特徵態等進行比較。

模擬結果發現氫鈍化矽(100)奈米線做為一完整結構,表現在傳送頻譜上是一階梯狀結構,代表在特定能量點提供的通道可以被電子完全佔滿,特徵態分析是一連續性結構;而氫鈍化矽(100)奈米線施加閘極電壓和氫鈍化矽(100)奈米線鍵結分子,兩者在傳送頻譜上皆表現出係數值的降低,特徵態分析看到中斷的等值面,呈現出閘極電壓和鍵結分子具有等效關係。


Silicon nanowire ( SiNW ) field effect transistors ( FET ) are attracting much interest for their high sensitivity, real-time detection, reproducibility, label-free and using micro-electro-mechanical process. It is imperative for us to reveal the gate effect of FET and the behavior of SiNW binding molecules by simulation, which could help us realize the microscopic mechanisms.

The research bases on density functional theory packed in ATK software. Analyse three models: H-passivated Si(100) nanowire, Si(100) nanowire experienced gate voltage effect and Si(100) nanowire binding molecules by transmission spectrum, density of state, transmission percentages and eigenstates individually.

Simulation results show that H-passivated Si(100) nanowire as a perfect structure which can be observed by step-wise curve in transmission spectrum. It means that the channels at specific energy can be occupied 100% by electrons, and it is continuous in eigenstate structure; however, in H-passivated Si(100) nanowire with gate voltage effect and H-passivated Si(100) binding R-APTES molecules, both of them display reduction of coefficient in transmission spectrum and discontinuity in eigenstate which show that there exists equivalent relationship between gate voltage effect and binding molecules.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 生物感測器基本原理 2
1.2.2 矽奈米線場效應電晶體 5
1.2.3 矽奈米線模擬 6
1.3 研究目的 8
1.4 論文架構 8
第2章 研究方法與理論 9
2.1 量子力學 9
2.2 密度泛函理論 11
2.3 理論計算流程 13
第3章 軟體與參數設定 18
3.1 單位晶胞 18
3.1.1 氫鈍化矽(100)單位晶胞 18
3.1.2 R-APTES 21
3.2 結構最佳化計算 25
3.2.1 氫鈍化矽(100)三單位晶胞結構最佳化 26
3.2.2 R-APTES三單位晶胞結構最佳化 27
3.3 矽奈米線與鍵結R-APTES的模型建置 32
3.3.1 氫鈍化矽(100)奈米線 32
3.3.2 氫鈍化矽(100)奈米線鍵結R-APTES模型 33
3.4 閘極電壓 34
3.5 ATK相關參數設定 35
第4章 模擬結果與討論 36
4.1 矽(100)單位晶胞的能帶結構 37
4.2 傳送頻譜圖分析 38
4.2.1 矽(100)_21312 38
4.2.2 矽(100)_21312施加閘極電壓 40
4.2.3 矽(100)_21312鍵結R-APTES 42
4.3 態密度分析 43
4.3.1 矽(100)_21312 43
4.3.2 矽(100)_21312施加閘極電壓 44
4.3.3 矽(100)_21312鍵結R-APTES 46
4.4 傳送比例分析 47
4.4.1 矽(100)_21312與矽(100)_21312施加閘極電壓 48
4.4.2 矽(100)_21312鍵結R-APTES 52
4.5 特徵態分析 54
4.5.1 矽(100)_21312 54
4.5.2 矽(100)_21312施加閘極電壓 55
4.5.3 矽(100)_21312鍵結R-APTES 58
第5章 結論與建議 61
5.1 結論 61
5.2 建議 62
附錄 63
參考文獻 65



[1]Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 293, 5533, 1289-1292 (2001)
[2]Jong-in Hahm and Charles M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, 4, 1, 51-54 (2004)
[3]F. Patolsky and C.M. Lieber, Nanowire nanosensors, Materials Today, 8, 20-28 (2005)
[4]Dorothee Grieshaber, Robert MacKenzie, Janos Vörös and Erik Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures, Sensors 8(3), 1400-1458 (2008)
[5]M. C. Lin, C. J. Chu, L. C. Tsai, H. Y. Lin, C. S. Wu, Y. P. Wu,Y. N. Wu, D. B. Shieh, Y. W. Su, and C. D. Chen, Control and Detection of Organosilane Polarization on Nanowire Field-Effect Transistors, Nano Letters, 7, 12, 3656-3661, (2007)
[6]Man-Fai Ng, Liping Zhou, Shuo-Wang Yang, Li Yun Sim, Vincent B. C. Tan and Ping Wu, Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach, Physical Review B, 76 ,155435 (2007)
[7]X. Blase, and M.-V. Ferna′ndez-Serra, Preserved Conductance in Covalently Functionalized Silicon Nanowires, Physical Review Letter, 100, 046802 (2008)
[8]M.-V. Ferna′ndez-Serra, Ch. Adessi, and X. Blase, Conductance, Surface Traps, and Passivation in Doped Silicon Nanowires, Nano Letters, 6, 12, 2674-2678 (2006)
[9]Man-Fai Ng, Lei Shen, Liping Zhou, Shuo-Wang Yang and Vincent B. C. Tan, Geometry Dependent I−V Characteristics of Silicon Nanowires, Nano Letters,, 8(11), 3662-3667 (2008)
[10]Troels Markussen, Antti-Pekka Jauho1, and Mads Brandbyge, Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics, Physical Review Letters, 103, 055502 (2009)
[11]Z. X. Dai, X. Q. Shi, X. H. Zheng and Z. Zeng, Effect of gating on the transport properties of a Si4 cluster, Physical Review B, 73, 045411 (2006)
[12]Li-Na Zhao, Xue-Feng Wang, Zhen-Hua Yao, Zhu-Feng Hou, and Marcus Yee, Atomistic modeling of the electrostatic and transport properties of a simplified nanoscale field effect transistor, Journal of Computational Electronics, 7, 500 (2008)
[13]X. F. WANG, L. N. ZHAO, Z. H. YAO, Z. F. HOU and M. YEE, ATOMISTIC SIMULATION OF GATE EFFECT ON NANOSCALE INTRINSIC Si FIELD-EFFECT TRANSISTORS, International Journal of Nanoscience, 8, 1&2, 113-117 (2009)
[14]M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings, Physical Review B, 31, 6207-6215 (1985)
[15]P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, 136, B864–B871 (1964)
[16]W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, 140, A1133-A1138 (1965)
[17]K. Stokbro, J. Taylor, M. Brandbyge, and H. Guo, Ab-initio nonequilibrium Green’s function formalism for calculating electron transport in molecular devices, Lect. Notes Phys., 680, 117–152 (2005)
[18]J. Baker, An Algorithm for the Location of Transition States, J. Comp. Chem., 7, 385, (1986)
[19]M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, AM1: A New General Purpose Quantum Mechanical Model, J. Am. Chem. Soc., 107:3902-3909 (1985)
[20]R. Stadler, V. Geskin, and J. Cornil, Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory, Physical Review B, 78, 113402 (2008)
[21]Michael Nolan, Sean O''Callaghan, Giorgos Fagas, and James C. Greer, Silicon Nanowire Band Gap Modification, Nano Letters, 7, 1, 34-38, (2007)
[22]Abhishek Kumar Singh, Vijay Kumar, Ryunosuke Note, and Yoshiyuki Kawazoe, Effects of Morphology and Doping on the Electronic and Structural Properties of Hydrogenated Silicon Nanowires Abhishek Kumar, Nano Letters, 6, 5, 920-925 (2006)
[23]Martin P. Persson, Aure′lien Lherbier, Yann-Michel Niquet, François Triozon and Stephan Roche, Orientational Dependence of Charge Transport in Disordered Silicon Nanowires, Nano Letters, 8, 12, 4146-4150 (2008)
[24]Hossam Haick, Patrick T. Hurley, Allon I. Hochbaum, Peidong Yang and Nathan S. Lewis, Electrical Characteristics and Chemical Stability of Non-Oxidized, Methyl-Terminated Silicon Nanowires, J. Am. Chem. Soc., 128 (28), 8990–8991 (2006)
[25]Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, 3 (2), 149–152 (2003)
[26]Ryszard Buczko, Stephen J. Pennycook and Sokrates T. Pantelides, Bonding Arrangements at the Si-SiO2 and SiC-SiO2 Interfaces and a Possible Origin of their Contrasting Properties, Physical Review Letters, 84, 943–946 (2000)
[27]Bongiorno, A. and Pasquarello, A., Atomistic model structure of the Si(100)-SiO2 interface from a synthesis of experimental data, Applied Surface Science, 234, 1-4, 190-196, (2004)
[28]Stanislav Markov, Peter V. Sushko, Scott Roy1, Claudio Fiegna, Enrico Sangiorgi, Alexander L. Shluger and Asen Asenov, Si–SiO2 interface band-gap transition–effects on MOS inversion layer, Phys. stat. sol. a, 205, 6, 1290-1295 (2008)
[29]Christopher J. Cramer, Essentials of computational chemistry: theories and models, NJ:Wiley, 2004
[30]Atomistix ToolKit version 2008.10, QuantumWise A/S (www.quantumwise.com).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔