(44.192.10.166) 您好!臺灣時間:2021/03/05 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家瑋
研究生(外文):Chia-Wei Hsu
論文名稱:Ooyama濕對流模式積分方法探討
論文名稱(外文):A Study of Time Integration Techniques in Ooyama’s Moist Convection Model
指導教授:郭鴻基郭鴻基引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:114
中文關鍵詞:波譜法溼大氣模式Fourier-ChebyshevDouble Chebyshev摩擦項
外文關鍵詞:spectral methodsmoist atmospheric modelFourier-ChebyshevDouble Chebysheveddy diffusivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用建立在波譜法上,且最少假設的濕大氣模式作進一步的模擬探
討。使用的模式為Ooyama(1990)所提出的溼大氣模式, 此模式利用亂度來做
熱力上的模擬,因此在熱力上所需的假設可降至最低,而模式中更整合了靜力平
衡以及非靜力平衡的模擬,使兩者都可利用高度坐標來表示,減少原本在兩種模
式整合時,因轉換座標所導致的額外誤差, 因此適合近年在大尺度與對流尺度交
互作用之研究。
在kuo and Cheng(1990)的濕大氣模式中,使用Fourier-Chebyshev的方法,其好處在於隨著解析度增加,誤差值具有指數收斂的性質, 不過空間解析度也因此跟網格數平方的倒數成正比,因此在波譜累積現象時,除了
加入濾波器的方法外, 也嘗試在Fourier-Chebyshev波譜法上加入渦流摩擦項來解決此問題,並使用Crank-Nickolson在配合三階的Adams-Bashforth離散法, 其中,Crank-Nickolson為一種隱式的積分法來增加模式的穩定性,使的模式中的時步不會受限。
分別在加入摩擦項的模式中進行了四個不同的實驗,分別為聲波調節,乾熱
氣塊上升,濕熱氣塊上升以及有逆溫層的乾熱氣塊上升模擬,將此模擬結果與使
用濾波器之模擬結果進行比較,可以發現些微的不同,不過其對流大致的形態都
相似。在摩擦項的加入實驗中可以發現,摩擦項對於氣胞的影響較具物理上的意
義,而由一固定形式的濾波器來解決在所有對流中能量累積的情形則較為主觀,
因為隨著濾波器的改變,其結果也會有很大的影響。
最後,由於風場可分成旋轉及輻散兩部分,將旋轉部分留下,使得風場部分
沒有輻散的分量,所以聲波在風場中被移除,可以進行時步較長的積分,在時步
的增加上,甚至可以為原本(可壓縮風場)時步的十倍,氣胞上升的形態也大致
吻合,這樣的結果就可以大幅的增進在時間積分上的效率,不過由於能量在非輻
散場中的累積,必須使用較大的摩擦係數,因此對於細節的描述也會有一定的影
響。

1 前言1
2 大氣模式回顧 3
2.1尤拉流體運動方程 5
2.2大尺度系統簡化 7
2.2.1原始方程 7
2.2.2傳統近似 10
2.2.3準靜力平衡近似 10
2.2.4其他大尺度簡化 13
2.3對流尺度系統簡化 14
2.3.1非彈性近似 14
2.3.2非彈性近似修正 15
2.3.3非彈力近似之適用性討論 17
2.4近期模式進展 19
2.4.1溼大氣模式 19
2.4.2非彈性準靜力整合模式 20
3 模式介紹 22
3.1最少假設之濕大氣模式 22
3.1.1大小尺度結合 24
3.1.2雲邊界之壓力梯度不連續 25
3.2波譜方法 26
3.2.1Fourier-Chebyshev 27
3.2.2Double Chebyshev 30
3.2.3渦流摩擦項 32
4 實驗設計及討論 34
4.1Fourier-Chebyshev與Double Chebyshev 34
4.1.1Fourier-Chebyshev 35
4.1.2Double Chebyshev 37
4.2渦流摩擦項 42
4.2.1Helmholtz方程數值解法 43
4.2.2實際模式模擬 46
4.2.3非輻散風場模擬 48
5 結論與討論 51
A Helmholtz方程解法 108
B AX+XB=C 原理 111

Arakawa, A., and C. S. Konor, (2008): Unification of the anelastic and quasi-Hydrostatic system of equations. Mon. Wea. Rev., 137, 710--726.

Bannon, P. R., (1995): hydrostatic adjustment: Lamb''s problem. J. Atmos. Sci., 52, 1743--1752.

Bannon, P. R., (1995): Potential vorticity, conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci., 52, 2302--2312.

Bannon, P. R., (1996): On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci., 53,3618--3628.

Davies, T., A. Staniforth, N. Wood, and J. Thuburn, (2003): Validity of anelastic and other equation sets as inferred from normal-mode analysis. Quart. J. Roy. Meteor. Soc., 129,2761--2775.

Durran, D. R., (1989): Improving the anelastic approximation. J. Atmos. Sci., 46,1454--1461.

Durran, D. R., (1991): The third-order Adam-Bashforth method: an attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702--720.

Durran, D. R., and A. Arakawa, (2007): Generalizing the Boussinesq approximation to stratified compressible flow. C. R. Mec., 335, 655--664.

Duchon, C. E., (1979): Lanczos filtering in one and two dimensions. J. App. Met., 18, 1016--1022.

Fulton, S. R., and W. H. Schubert, (1987): Chebyshev spectral methods for limited-area models. Part I: model probem analysis. Mon. Wea. Rev., 115, 1940--1953.

Fulton, S. R., and W. H. Schubert, (1987): Chebyshev spectral methods for limited-area models. Part II: shallow water model. Mon. Wea. Rev., 115, 1954--1965.

Hausman, S. A., K. V. Ooyama, and W. H. Schubert, (2005): Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63, 87--108.

Janjic, Z. I., J. P. Gerrity, and S. Nickovic, (2001): An alternate approach to nonhydrostatic modeling. Mon. Wea. Rev., 82, 1164--1178.

Janjic, Z. I., (2003): A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271--285.

Kalnay, E., (2002): Atmospheric modeling, data assimilation and predictability. Cambrige University Press, 37--83 pp.

Klemp, J., and R. Wilhemson, (1978): The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070--1096.

Kuo, H. C., and W. H. Schubert, (1988): Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887--916.

Kuo, H. C., and R. T. Williams, (1997): Scale-dependent accuracy in regional spectral methods. Mon. Wea. Rev., 126, 2640--2647.

Kuo, H. C., and C. T. Cheng, (1999): Experiments with a spectral convection model. TAO, 10, 651--691.

Kuo, H. C., and Y. C. Chang, (2009): A new parallel domain-decomposed Chebyshev collocation method for atmospheric modeling. J. Adv. Model. Earth Syst., In preparation

Laprise, R., (1992): The Euler equations of motion withhydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197--207.

Lipps, F. B., and R. S. Helmer, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 2192--2210.

Miller, M. J., (1974): On the use of pressure as vertical co-ordinate in modeling convection. Quart. J. Roy. Meteor. Soc., 100, 155--162.

Nance, L. B., and D. R. Durran, (1994): A comparison of the accuracy of three anelastic systems and the pseudo-incompressible system. J. Atmos. Sci., 51, 2549--3565.

Ogura, Y., and N. A. Phillips, (1961): Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 173--179.

Ooyama, K. V., (1990): A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 2580--2592.

Ooyama, K. V., (2001): A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58, 2073--2101.

Richardson, L. F., (1992): Weather Prediction by Numerical Process. Cambrige University Press, 236 pp.

Smolarkiewicz, P. K., and A. Dornbrack, (2008): Conservative integrals of adiabatic Durran''s equations. Int. J. Numer. Math. Fluids, 56, 1513--1519

White, A. A., (1989): An extended version of a nonhydrostatic, pressure coordinate model. Quart. J. Roy. Meteor. Soc., 115, 1243--1251.

Wilhemson, R., and Y. Ogura, (1972): The pressure perturbation and the numerical modeling of a cloud. {sl J. Atmos. Sci., }{ f 29,} 1295--1307.

Wolff, P. M., (1958): The error in numerical forecasts due to retrogression of ultra-long waves. Mon. Wea. Rev., 86, 245--250


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔