跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧有宗
研究生(外文):You-Tzung Deng
論文名稱:鑄膜液晶核密度對PVDF薄膜結構之影響
論文名稱(外文):The influence of the density of crystalline nuclei in casting solution on PVDF membrane morphology
指導教授:王大銘
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:108
中文關鍵詞:PVDF非溶劑誘導式相分離晶核密度固-液相分離液-液相分離
外文關鍵詞:PVDFnon-solvent induced phase separation (NIPS)nuclei densitysolid-liquid demixingliquid-liquid demixing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1418
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以非溶劑誘導式相分離法製備結晶性高分子PVDF薄膜,探討其結晶行為。文獻中多認為,結晶性高分子之成膜過程主要掌控於固-液相分離(結晶)與液-液相分離兩機制之競爭。近年來發現預先存在於鑄膜液內的晶核密度,能夠改變固-液相分離所產生的結構。本研究中藉著操控晶核密度去控制薄膜結構,操控的變數有溶解溫度、溶劑之選擇以及添加劑,使用的溶劑為NMP以及TEP,添加劑為水,利用蒸氣誘導式相分離法,以及乙醇槽濕式法成膜,降低溶劑與非溶劑之間質傳速度,增加鑄膜液位於固-液相分離的時間,以生成結晶。

結果顯示,較高的溶解溫度下,因高分子分散程度較佳,鑄膜液的晶核密度較低。使用NMP作為溶劑的系統,經由蒸氣誘導式相分離(VIPS)成膜,因蒸氣進入鑄膜液較慢,濃度組成會位在固-液相分離區較久,能夠成長結晶。若鑄膜液的晶核密度較低時,晶核在成長的階段能夠較不互相影響,因此生成結晶顆粒。當鑄膜液的晶核密度較高時,於固-液相分離區內晶核相互拉扯,造成結晶無法成長,隨著吸水量增加,當鑄膜液組成進入液-液相分離區後,受液-液相分離影響而形成了雙連續結構。而經由乙醇槽濕式法成膜,鑄膜液因為溶劑與非溶劑質傳較快,濃度組成較快進入液-液相分離區與固-液相分離區。在晶核密度較低時,液-液相分離先造成了雙連續相的出現,然而結晶的影響能夠讓高分子富相產生結晶繼續成長的現象,最後可觀察到雙連續聚集的顆粒結構。當晶核密度較高時,因晶核相互拉扯的影響而抑制了結晶的成長,最終薄膜依然為雙連續結構。

溶劑之溶解力亦會造成晶核密度的改變,使用溶解度較低的TEP作為溶劑,晶核密度會被提高,因此相同的溶解溫度下會得到較小的顆粒或雙連續的結構。添加劑亦有可能改變晶核密度,使用與高分子親合性佳的添加劑會讓晶核密度降低,顆粒結構增大,反之則得到較小的顆粒或雙連續結構。

由結晶形態的觀察可發現,以固-液相分離主導所生成的顆粒結構為β態。而先液-液相分離後才進行固-液相分離所形成的顆粒結構則是以α態為主。

實務的應用上,顆粒結構之薄膜其孔洞之間具有高度連通性,應用在分離程序上有很大的潛力。但尺度越大的顆粒,顆粒之間的連接點較少,因此薄膜強度會降低,雙連續結構薄膜其蕾絲的連接點較多,具有較佳的薄膜強度。在本研究中,使用NMP及TEP作為溶劑,皆可利用增加晶核密度去製備出雙連續結構薄膜,其孔隙度為75%~85%,孔徑範圍為0.11~0.48μm。
In this work, the crystallization behavior for poly(vinylidene fluorides) (PVDF) membranes via non-solvent induced phase separation (NIPS) was investigated. Formation mechanism of crystallizable polymer membranes is governed primarily by the competition between two types of phase separation, the solid-liquid demixing, or so called crystallization, and liquid-liquid demixing. Recent studies have shown that the nuclei density for initiation of crystallization also plays an important role in determining membrane morphology. The effect of nuclei density on the morphology of membranes was investigated by changing different conditions of dissolution temperature, solvent, and additives. Membranes were fabricated from PVDF/N-methyl-2-pyrrolidinone (NMP) and PVDF/Triethyl phosphate (TEP) solutions using vapor induced phase separation (VIPS) or wet immersion in EtOH bath. In those processes the composition path stayed in the crystallization longer because of low mass transfer rate between solvent and non-solvent.

Result shows that at high dissolution temperatures, the nuclei density was low because the polymer chains were well-dispersed. For PVDF/NMP membranes prepared by VIPS, water moisture entered the casting solution slowly, and the composition path stayed in S-L demixing region longer so that crystallization occurred. In the case of low nuclei density, nuclei were not affected by each other in the growing stage and finally large particulate structures were formed. As for the case of high nuclei density, crystallization was suppressed because of high degree of polymer chain entanglement. As the composition entered the L-L demixing region, lacy structures were formed via L-L demixing. For membranes prepared by wet immersion in EtOH, the composition path entered the L-L demixing and S-L demixing region quickly because of fast mass transfer rate between solvent and non-solvent. In the case of low nuclei density, lacy structures formed first and then followed by crystallization. Particulate structures with bi-continuous surface were formed. As for the case of high nuclei density, crystallization was suppressed and lacy structures were obtained.

Solvent and the additives also dominated the nuclei density, which was decreased in a solvent with higher solubility or by the addition of additives with better affinity for PVDF.

Besides, the difference in the form of crystal from different preparation process was discovered. Membranes by liquid-liquid demixing followed by crystallization were of α-type crystal structure. However, membranes of β-type crystal were obtained by the domination of crystallization.
In practical application, membranes with interconnected globule structures can be applied in some process because of high inter-connectivity and porosity. However, with the increase of globule diameter, the mechanism strength decreased. In this work, bi-continuous membranes were fabricated by increasing the initial nuclei density. The porosity was about 75 to 85%, and the pore size was in the range of 0.11 to 0.48μm.
中文摘要 I

英文摘要 III

目錄 VI

圖索引 VIII

表索引 XIV

第一章 緒論 1
1-1薄膜應用 1
1-2薄膜製備方法 2
1-3非溶劑誘導式相分離成膜理論 4
1-3-1熱力學 4
1-3-2質傳動力學 8
1-4聚偏二氟乙烯性質介紹 11
1-5文獻回顧 15
1-5-1巨型孔洞 15
1-5-2結晶性高分子薄膜 17
1-5-3 PVDF薄膜 18
1-6研究動機和目的 25
第二章 實驗材料與研究方法 27
2-1實驗藥品 27
2-2實驗儀器 27
2-3實驗方法 28
2-3-1鑄膜液配製 28
2-3-2薄膜之製備 30
2-3-3掃描式電子顯微鏡分析(SEM) 32
2-3-4結晶型態測定 30
2-3-5吸水秤重實驗 33
2-3-6黏度量測 33
2-3-7霧化時間及膠化時間測定 33
2-3-8孔徑大小及分布量測 34
2-3-9孔隙度量測 34
第三章 結果與討論 35
3-1溶解溫度對PVDF/NMP薄膜結構之影響 36
3-2溶解溫度對PVDF/TEP薄膜結構之影響 53
3-3不同溶劑系統之比較 73
3-4高分子濃度與添加非溶劑對薄膜結構之影響 75
3-4-1高分子濃度對薄膜結構之影響 75
3-4-2添加非溶劑對薄膜結構之影響 78
3-5雙連續結構之PVDF薄膜 93
第四章 結論 99
參考文獻 101
1.Mulder, M., Basic Principles of Membrane Technology. Kluwer Academic. 2nd ed. 1996, Dordrecht, Netherland, Boston: Kluwer Academic.

2.Reuvers, A. J.; Altena, F. W.; Smolders, C. A., Demixing and Gelation Behavior of Ternary Cellulose-Acetate Solutions. Journal of Polymer Science Part B-Polymer Physics 1986, 24, (4), 793-804.

3.Remuzzi, A.; Boccardo, P., Albumin Treatment Reduces Invitro Platelet Deposition to PMMA Dialysis Membrane. International Journal of Artificial Organs 1993, 16, (3), 128-131.

4.Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S., Microporous Membrane Formation Via Thermally Induced Phase-Separation .1. Solid Liquid-Phase Separation. Journal of Membrane Science 1990, 52, (3), 239-261.

5.Mehta, R. H.; Madsen, D. A.; Kalika, D. S., Microporous Membranes Based on Poly(Ether Ether Ketone) Via Thermally-Induced Phase-Separation. Journal of Membrane Science 1995, 107, (1-2), 93-106.

6.Cheng, L. P.; Dwan, A. H.; Gryte, C. C., Membrane Formation by Isothermal Precipitation in Polyamide Formic-Acid Water-Systems .1. Description of Membrane Morphology. Journal of Polymer Science Part B-Polymer Physics 1995, 33, (2), 211-222.

7.Cheng, L. P.; Dwan, A. H.; Gryte, C. C., Membrane Formation by Isothermal Precipitation in Polyamide Formic-Acid Water-Systems .2. Precipitation Dynamics. Journal of Polymer Science Part B-Polymer Physics 1995, 33, (2), 223-235.

8.Mark, J. E., Polymer Data Handbook. OXFORD UNIVERSITY PRESS: 1999; Vol. 2.

9.Bulte, A. M. W.; Folkers, B.; Mulder, M. H. V.; Smolders, C. A., Membranes of Semicrystalline Aliphatic Polyamide Nylon-4,6 - Formation by Diffusion-Induced Phase-Separation. Journal of Applied Polymer Science 1993, 50, (1), 13-26.

10.Wienk, I. M.; Boom, R. M.; Beerlage, M. A. M.; Bulte, A. M. W.; Smolders, C. A.; Strathmann, H., Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science 1996, 113, (2), 361-371.

11.Lin, D. T.; Cheng, L. P.; Kang, Y. J.; Chen, L. W.; Young, T. H., Effects of precipitation conditions on the membrane morphology and permeation characteristics. Journal of Membrane Science 1998, 140, (2), 185-194.

12.Lin, F. C.; Wang, D. M.; Lai, J. Y., Asymmetric TPX membranes with high gas flux. Journal of Membrane Science 1996, 110, (1), 25-36.

13.Stropnik, C.; Musil, V.; Brumen, M., Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer 2000, 41, (26), 9227-9237.

14.Hasegawa, R.; Tadokoro, H.; Kobayash.M, Molecular Conformation and Packing of Poly(Vinylidene Fluoride) - Stability of 3 Crystalline Forms and Effect of High-Pressure. Polymer Journal 1972, 3, (5), 591-599.

15.Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P., Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science 2002, 210, (2), 315-329.

16.Lando, J. B.; Olf, H. G.; Peterlin, A., Nuclear Magnetic Resonance and X-Ray Determination of Structure of Poly(Vinylidene Fluoride). Journal of Polymer Science Part a-1-Polymer Chemistry 1966, 4, 941-951.

17.Davis, G. T.; Mckinney, J. E.; Broadhurst, M. G.; Roth, S. C., Electric-Field-Induced Phase-Changes in Poly(Vinylidene Fluoride). Journal of Applied Physics 1978, 49, (10), 4998-5002.

18.Prest, W. M.; Luca, D. J., Formation of Gamma-Phase from Alpha-Polymorphs and Beta-Polymorphs of Polyvinylidene Fluoride. Journal of Applied Physics 1978, 49, (10), 5042-5047.

19.Park, Y. J.; Kang, Y. S.; Park, C. M., Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions. European Polymer Journal 2005, 41, (5), 1002-1012.

20.Hasegawa, R.; Takahash.Y; Tadokoro, H.; Chatani, Y., Crystal-Structures of 3 Crystalline Forms of Poly(Vinylidene Fluoride). Polymer Journal 1972, 3, (5), 600-610.

21.Matz, R., Structure of Cellulose-Acetate Membranes .1. Development of Porous Structures in Anisotropic Membranes. Desalination 1972, 10, (1), 1-15.

22.Frommer, M. A.; Messalem, R. M., Mechanism of Membrane Formation .6. Convective Flows and Large Void Formation during Membrane Precipitation. Industrial & Engineering Chemistry Product Research and Development 1973, 12, (4), 328-333.

23.Strathmann, H.; Kock, K., Formation Mechanism of Phase Inversion Membranes. Desalination 1977, 21, (3), 241-255.

24.Broens, L.; Altena, F. W.; Smolders, C. A.; Koenhen, D. M., Asymmetric Membrane Structures as a Result of Phase-Separation Phenomena. Desalination 1980, 32, (1-3), 33-45.

25.Smolders, C. A.; Reuvers, A. J.; Boom, R. M.; Wienk, I. M., Microstructures in Phase-Inversion Membranes .1. Formation of Macrovoids. Journal of Membrane Science 1992, 73, (2-3), 259-275.

26.Lai, J. Y.; Lin, F. C.; Wu, T. T.; Wang, D. M., On the formation of macrovoids in PMMA membranes. Journal of Membrane Science 1999, 155, (1), 31-43.

27.Bulte, A. M. W.; Mulder, M. H. V.; Smolders, C. A.; Strathmann, H., Diffusion induced phase separation with crystallizable nylons .1. Mass transfer processes for nylon 4,6. Journal of Membrane Science 1996, 121, (1), 37-49.

28.Bulte, A. M. W.; Mulder, M. H. V.; Smolders, C. A.; Strathmann, H., Diffusion induced phase separation with crystallizable nylons .2. Relation to final membrane morphology. Journal of Membrane Science 1996, 121, (1), 51-58.

29.Lin, D. J.; Cheng, L. P.; Lin, S. P., Effect of compatible nucleation seeds on the morphology of porous Nylon 6 membrane. Desalination 2002, 145, (1-3), 31-37.

30.Young, T. H.; Lin, D. J.; Gau, J. J.; Chuang, W. Y.; Cheng, L. P., Morphology of crystalline nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid-liquid phase separation. Polymer 1999, 40, (18), 5011-5021.

31.Lin, D. J.; Chang, C. L.; Lee, C. K.; Cheng, L. P., Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system. European Polymer Journal 2006, 42, (2), 356-367.

32.Cheng, L. P.; Young, T. H.; Chuang, W. Y.; Chen, L. Y.; Chen, L. W., The formation mechanism of membranes prepared from the nonsolvent-solvent-crystalline polymer systems. Polymer 2001, 42, (2), 443-451.

33.Wang, D. M.; Lin, F. C.; Chiang, J. C.; Lai, J. Y., Control of the porosity of asymmetric TPX membranes. Journal of Membrane Science 1998, 141, (1), 1-12.

34.Wang, D. M.; Chang, C. Y.; Wang, C. Y.; Wu, T. T.; Lai, J. Y., Preparation and application of microporous TPX membranes. Macromolecular Symposia 2002, 188, 49-60.

35.Bottino, A.; Capannelli, G.; Munari, S.; Turturro, A., Solubility Parameters of Poly(Vinylidene Fluoride). Journal of Polymer Science Part B-Polymer Physics 1988, 26, (4), 785-794.

36.Bottino, A.; Cameraroda, G.; Capannelli, G.; Munari, S., The Formation of Microporous Polyvinylidene Difluoride Membranes by Phase-Separation. Journal of Membrane Science 1991, 57, (1), 1-20.

37.Lin, D. J.; Chang, C. L.; Chang, C. L.; Chen, T. C.; Cheng, L. P., Fine structure of poly(vinylidene fluoride) membranes prepared by phase inversion from a water/N-methyl-2-pyrollidone/poly(vinylidene fluoride) system. Journal of Polymer Science Part B-Polymer Physics 2004, 42, (5), 830-842.

38.Lin, D. J.; Chang, H. H.; Chen, T. C.; Lee, Y. C.; Cheng, L. P., Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. European Polymer Journal 2006, 42, (7), 1581-1594.

39.Zuo, D. Y.; Zhu, B. K.; Cao, J. H.; Xu, Y. Y., Influence of alcohol-based nonsolvents on the formation and morphology of PVDF membranes in phase inversion process. Chinese Journal of Polymer Science 2006, 24, (3), 281-289.

40.Lin, D. J.; Beltsios, K.; Young, T. H.; Jeng, Y. S.; Cheng, L. P., Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science 2006, 274, (1-2), 64-72.

41.Blundell, D. J.; Keller, A.; Kovacs, A. J., A New Self-Nucleation Phenomenon and Its Application to Growing of Polymer Crystals from Solution. Journal of Polymer Science Part B-Polymer Letters 1966, 4, 481-486.

42.Lin, D. J.; Chang, C. L.; Chen, T. C.; Cheng, L. P., Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system. Desalination 2002, 145, (1-3), 25-29.

43.Gregorio, R.; Cestari, M., Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(Vinylidene Fluoride). Journal of Polymer Science Part B-Polymer Physics 1994, 32, (5), 859-870

44. 馬良智,〝聚偏二氟乙烯中空纖維膜之結構設計研究〞,碩士論文,中原大學化 工系,西元2007年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top