(3.239.192.241) 您好!臺灣時間:2021/03/02 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴潤錕
研究生(外文):Jun-Kun Lai
論文名稱:探討多胜肽與蛋白質分子間之交互作用
論文名稱(外文):Intercations between Polypeptide and Protein molecules
指導教授:王勝仕
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:165
中文關鍵詞:溶菌酶胰島素木瓜酵素澱粉纖維共聚多胜肽抑制囊泡
外文關鍵詞:lysozymeamyloid fibrilinsulinpapaincopolypeptideinhibitionvesicle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質是生物體內重要的組成元素,在各種生理活動扮演著不可或缺的角色。酵素是一種以蛋白質為構造主體的催化劑,用以促進生物體內各種特定生化反應之進行。具有正確構形的蛋白質,才能發揮其本身的功能,進行各種反應,酵素亦是如此,而摺疊錯誤的蛋白質不僅可能失去其正常之功能,更可進而產生聚集體,導致疾病的發生。
本論文中,吾人嘗試對於多胜肽和蛋白質分子間之作用進行探討,藉由不同組成、比例之共聚多胜肽對蛋白質進行包覆、吸附等方式,進而維持蛋白質構形。此外,並利用共聚多胜肽試驗其對於蛋白質折疊、結構變化和聚集、類澱粉纖維生成之影響。
本論文第一部份,以木瓜酵素為模型酵素,藉由嵌段共聚多胜肽Lys-b-Gly形成囊泡(vesicle)後,再結合與矽之礦化作用(mineralization)形成矽網絡結構完成固定化。相對於未固定化和只由囊泡包覆之酵素,本系統polypeptide mediated silica-immobilized papain提升木瓜酵素對於pH值變化和熱之穩定性以及重覆使用率(例如在25°C下放置48小時後,以0小時的活性為基準,固定化之系統保持約68.5%的活性、未固定化之組別約29.6%之活性)。藉由多胜肽所形成之矽網絡結構保護木瓜酵素,進而維持固定化酵素之活性。由動力學分析得知,矽/多胜肽形成網絡結構之特性和構形,對於酵素之功能有著重要的影響。
本論文第二部份,以牛胰島素和母雞蛋白溶菌酶為模型,探討兩種隨機共聚多胜肽D,L-lysine-co-glycine和D,L-lysine-co-L-phenylalanine對於在試管內之蛋白質形成類澱粉纖維的影響。由穿透式電子顯微和ThT螢光光譜分析之實驗結果觀察得知,對於抑制類澱粉纖維生成之效果,主要受到所加入多胜肽之數量和組成比例的影響。例如在添加1 mM隨機共聚多胜的組別中,母雞蛋白類澱粉纖維的形成受到約35 %的抑制,而添加2 mM之組別,則可達到約65 %之抑制效果。而對於牛胰島素,加入0.5mM或是1mM隨機共聚多胜則可達到約25 %或是80 %之抑制效果。隨著共聚多胜肽中glycine 或是phenylalanine之比例提高,對於抑制類澱粉纖維生成有更好的效果。此外,吾人藉由圓二色光譜、ANS 螢光光譜、自身螢光光譜和SDS-PAGE等分析方法探討兩種蛋白質的結構變化以及抑制機制。母雞蛋白溶菌酶和共聚多胜肽間的作用力由實驗結果推測主要可能為氫建和疏水作用力。由研究結果,有助於了解類澱粉纖維生成的過程中,蛋白質分子結構變化及詳細機制,並可更進一步對治療類澱粉症提供有效的策略。


Proteins are essential elements for living organisms and play a crucial role in various physiological activities. An enzyme is a protein molecule that serves as a biological catalyst. Proteins/enzymes with correct conformations are able to serve appropriate biological functions. Proteins that misfold may not only lose their normal biological function but also form aggregates which lead to a variety of diseases.
In this thesis, we attempt to explore the interactions between the polypeptides and protein molecules. The preservation of protein conformation was carried out by copolypeptides with different compositions through various processes such as entrapment, or adsorption. Moreover, we examined the effects of polypeptides on folding, structural changes, aggregation, and amyloid fibrillation of proteins.
In the first part of the thesis, we report the immobilization of a model enzyme, papain, within silica matrices by combining vesiclization of poly-L-lysine-b-polyglycine block copolypeptides with following silica mineralization. The polypeptide mediated silica-immobilized enzyme exhibits enhanced pH and thermal stability and reusability, comparing with the free enzyme and the vesicle encapsulated enzyme (e.g. after 48 hr incubation at 25°C, the percentage residual activities for the immobilized and the untreated papain samples were found to be ~68.5% and ~29.6% of that of the free papain at 0 hr, respectively). The enhanced enzymatic activity in the immobilized enzyme is due to the confinement of the enzyme in the polypeptide mediated silica matrices. Kinetic analysis shows that the enzyme functionality is determined by the structure and property of silica/polypeptide matrices.
In the second part of the thesis, with hen egg-white lysozyme and bovine insulin as the model systems, we show the results regarding the influences of two random copolypeptide D,L-lysine-co-glycine and D,L-lysine-co-L-phenylalanine on the in vitro protein fibrillation. Our TEM and ThT fluorescence results show that the observed inhibitory effects on amyloid fibrillation are significantly dependent on the amount and the composition ratio of polypeptide chains. For instance, the percentage reduction in hen lysozyme fibrillation was found to be approximately 35 % or 65% for the case of 1 mM or 2 mM random copolypeptide, respectively. The addition of 0.5 mM or 1 mM random copolypeptide results in approximately 25 % or 80% reduction, respectively, in fibrillogenesis derived from bovine insulin. The copolypeptides with a higher fraction of glycine or L-phenylalanine residue exhibit higher inhibitory potency against fibril formation. Moreover, we examine the structural changes in both proteins and inhibition mechanisms through CD spectroscopy, ANS fluorescence, intrinsic fluorescence spectroscopy, and SDS-PAGE. The major driving forces for the association of HEWL and copolypeptides are likely hydrogen bonding and hydrophobic interactions. We believe that the outcome of this work may contribute to the understanding of molecular mechanism(s) of the fibril formation and provide potential treatment strategies against the amyloid formation associated with amyloid disease.


摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
第二章 文獻回顧 3
2-1 蛋白質簡介 3
2-2 蛋白質的結構 6
2-3 穩定蛋白質構造之作用力 12
2-4 蛋白質的構形(conformatiom) 15
2-5 蛋白質的摺疊 17
2-6 酵素簡介 19
2-7 蛋白質變性和酵素失活之因素 21
2-8 木瓜酵素(papain)之介紹 24
2-9 溶菌酶(lysozyme) 之簡介 30
2-9-1 母雞蛋白溶菌酶之結構 31
2-10 胰島素(insulin)之簡介 34
2-10-1 牛胰島素之結構 35
2-11固定化之簡介 38
2-12奈米粒子與多胜肽之簡介 41
2-13聚集體 48
2-13-1 聚集體的生成 49
2-13-2 類澱粉症 51
2-14 蛋白質構形變化與聚集之偵測方法簡介 52
2-14-1 Thioflavin T (ThT) 螢光光譜方法 52
2-14-2 ANS 螢光光譜方法 53
2-14-3 Congo red鍵結方法 54
2-14-4 圓二色光譜方法 56
2-14-5 蛋白質電泳方法(protein electrophoresis) 58
2-14-6 自身螢光光譜(Intrinsic fluorescence spectroscopy) 58
2-14-7 穿透式電子顯微鏡 59
2-14-8 蛋白質濃度測定 59
第三章 研究動機 61
第四章 實驗儀器、藥品與步驟 63
4-1 實驗裝置 63
4-2 實驗藥品 64
4-3 實驗方法和步驟 66
4-3-1 嵌段共聚多胜肽 66
4-3-1-1 多胜肽利用包覆方式固定化木瓜酵素 66
4-3-1-2 多胜肽和矽利用包覆方式固定化木瓜酵素 67
4-3-1-3 木瓜酵素濃度測定 67
4-3-1-4 木瓜酵素活性測定 68
4-3-1-5 實驗條件和動力學測定 68
4-3-1-6 遠紫外光圓二色光譜分析 (Far-UV circular dichroism spectrometry) 69
4-3-1-7 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 69
4-3-2 隨機共聚多胜肽 69
4-3-2-1 隨機共聚多胜肽濃度對牛胰島素類澱粉纖維形成之影響 69
4-3-2-2 隨機共聚多胜肽對母雞蛋白類澱粉纖維形成之影響 70
4-3-2-3 ThT螢光光譜分析 (Thioflavin T fluorescence spectroscopy) 70
4-3-2-4 ANS螢光光譜分析 (ANS fluorescence spectroscopy) 70
4-3-2-5 Congo red鍵結分析 (Congo red binding assay) 71
4-3-2-6 遠紫外光圓二色光譜分析 (Far-UV circular dichroism spectrometry) 71
4-3-2-7 SDS-蛋白質電泳 (SDS-PAGE) 72
4-3-2-8 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 74
4-3-2-9自身螢光光譜分析 (intrinsic fluorescence spectroscopy) 74
4-3-2-10蛋白質之濁度測定(turbidity measurement) 74
第五章 結果與討論 75
5-1 嵌段共聚多胜肽對木瓜酵素結構和活性之影響 75
5-1-1 嵌段共聚多胜肽固定化包覆效率之分析 76
5-1-2 固定化後之結構組成分析 78
5-1-3 嵌段共聚多胜肽固定化之熱穩定性分析 80
5-1-4 嵌段共聚多胜肽固定化對於pH值穩定性分析 83
5-1-5 遠紫外光圓二色光譜分析 85
5-1-6 酵素動力學之分析 88
5-1-7 固定化之重複使用性 90
5-2 隨機共聚多胜肽對母雞蛋白類澱粉纖維形成之影響 91
5-2-1 ThT螢光光譜分析 92
5-2-2 ANS螢光光譜分析 95
5-2-4 遠紫外光圓二色光譜分析 99
5-2-5 自身螢光光譜分析 106
5-2-6 穿透式電子顯微鏡分析 108
5-2-7 濁度和SDS蛋白質電泳分析 110
5-2-8 隨機共聚多胜肽對母雞蛋白類澱粉纖維生成之影響討論 114
5-3 隨機共聚多胜肽對牛胰島素類澱粉纖維形成之影響 115
5-3-1 ThT螢光光譜分析 116
5-3-2 ANS螢光光譜分析 118
5-3-3 Congo red鍵結測試 120
5-3-4 遠紫外光圓二色光譜分析 122
5-3-5 自身螢光光譜分析 129
5-3-6 穿透式電子顯微鏡分析 131
5-3-7 濁度和SDS蛋白質電泳分析 133
5-3-8 隨機共聚多胜肽對牛胰島素類澱粉纖維生成之影響討論 137
第六章 結果討論與建議 138
6-1 嵌段共聚多胜肽對於穩定木瓜酵素結構與活性之影響 138
6-2 隨機共聚多胜肽對於類澱粉纖維與蛋白質結構之影響 139
6-2-1 牛胰島素和母雞蛋白溶菌酶形成類澱粉纖維之機制 141
6-2-2 隨機共聚多胜肽濃度提升抑制牛胰島素和母雞蛋白溶菌酶形成類澱粉纖維之機制 141
6-3隨機共聚多胜肽對於牛胰島素和母雞蛋白溶菌酶延遲期之影響 142
6-4隨機共聚多胜肽對於牛胰島素和母雞蛋白溶菌酶作用力之探討 143
6-5建議與未來展望 145
參考文獻 146
附錄A 合成共聚多胜肽 157
A-1 乾燥溶劑 157
A-2 合成起始劑 157
A-3 製備α-胺基酸的N-carboxyanhydrides(NCAs) 157
A-4 胺基酸聚合反應 158
A-5 切除多胜肽之保護基 159
附錄B 牛胰島素和母雞蛋白類澱粉纖維成長動力學 160



1David L. Nelson, M. M. C. Lehninger principles of biochemistry. 3rd edn, (Worth Publishers, 2000).
2Jeremy M. Berg, J. L. T., Lubert Stryer. Biochemistry. 5th edn, (W.H. Freeman and Company 2001).
3Tachibana, H., Oka, T. & Akasaka, K. Native-like tertiary structure formation in the [alpha]-domain of a hen lysozyme two-disulfide variant1. Journal of Molecular Biology 314, 311-320 (2001).
4Touch, V., Hayakawa, S. & Saitoh, K. Relationships between conformational changes and antimicrobial activity of lysozyme upon reduction of its disulfide bonds. Food Chemistry 84, 421-428 (2004).
5Tachibana, H. Propensities for the formation of individual disulfide bonds in hen lysozyme and the size and stability of disulfide-associated submolecular structures. FEBS letters 480, 175-178 (2000).
6Ptitsyn, O. B. Structures of Folding Intermediates. Current Opinion in Structural Biology 5, 74-78 (1995).
7Dill, K. et al. Principles of protein folding--a perspective from simple exact models. Protein Science: A Publication of the Protein Society 4, 561-602 (1995).
8Onuchic, J. N., Nymeyer, H., Garcia, A. E., Chahine, J. & Socci, N. D. The energy landscape theory of protein folding: Insights into folding mechanisms and scenarios. Advances in Protein Chemistry 53, 87-152 (2000).
9Dobson, C. M. Protein folding and misfolding. Nature 426, 884-890 (2003).
10Wolynes, P. G. Energy landscapes and solved protein-folding problems. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 363, 453-464 (2005).
11Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z. & Socci, N. D. Toward an outline of the topography of a realistic protein-folding funnel. Proceedings of the National Academy of Sciences of the United States of America 92, 3626-3630 (1995).
12Lineweaver, H. & Burk, D. The determination of enzyme dissociation constants. Journal of the American Chemical Society 56, 658-666 (1934).
13Neurath, H., Greenstein, J., Putnam, F. & Erickson, J. The Chemistry of Protein Denaturation. Chem. Rev 34, 157-265 (1944).
14Lundgren, H. The catalytic effect of active crystalline papain on the denaturation of thyroglobulin. Journal of Biological Chemistry 138, 293-303 (1941).
15Courtenay, E., Capp, M. & Record, M. Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Science: A Publication of the Protein Society 10, 2485-2497 (2001).
16Vernaglia, B., Huang, J. & Clark, E. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules 5, 1362-1370 (2004).
17Cleland, W. Dithiothreitol, a New Protective Reagent for SH Groups*. Biochemistry 3, 480-482 (1964).
18Xiong, L., Raymond, L., Hayes, S., Raymond, G. & Caughey, B. Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. Journal of neurochemistry 79, 669-678 (2008).
19Sajid, M. & McKerrow, J. Cysteine proteases of parasitic organisms. Molecular and biochemical parasitology 120, 1-21 (2002).
20Grudkowska, M. & Zagdanska, B. Multifunctional role of plant cysteine proteinases. Acta biochimica polonica-english edition, 609-624 (2004).
21Salas, C., Gomes, M., Hernandez, M. & Lopes, M. Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry 69, 2263-2269 (2008).
22Chapman, H., Riese, a., RJ & Shi, G. Emerging roles for cysteine proteases in human biology. Annual review of physiology 59, 63-88 (1997).
23Garrett, R. & Grisham, C. Biochemistry ( Fort Worth, TX, 1999)
24Lowe, G. The cysteine proteinases. Tetrahedron 32, 291-302 (1976).
25Vernet, T. et al. Structural and functional roles of asparagine 175 in the cysteine protease papain. Journal of Biological Chemistry 270, 16645-1665 (1995).
26Mellor, G., Thomas, E., Topham, C. & Brocklehurst, K. Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe. Biochemical Journal 290, 289-296 (1993).
27Liu, S. & Hanzlik, R. The contribution of intermolecular hydrogen bonding to the kinetic specificity of papain. Biochimica et biophysica acta 1158, 264-272 (1993).
28Kamphuis, I., Kalk, K., Swarte, M. & Drenth, J. Structure of papain refined at 1.65 A resolution* 1. Journal of Molecular Biology 179, 233-256 (1984).
29Drenth, J. et al. The crystal structure of papain C*:: I. Two-dimensional fourier syntheses. Journal of Molecular Biology 5, 398-407 (1962).
30Sangeetha, K. & Abraham, T. Chemical modification of papain for use in alkaline medium. Journal of Molecular Catalysis. B, Enzymatic 38, 171-177 (2006).
31Li, F., Xing, Y. & Ding, X. Immobilization of papain on cotton fabric by sol-gel method. Enzyme and Microbial Technology 40, 1692-1697 (2007).
32Lozano, P., Cano, J., Iborra, J. & Manjon, A. Glycylglycylphenylalaninamide synthesis catalysed by papain in a medium containing polyols. Biotechnology and applied biochemistry 18, 67-74 (1993).
33Kumpel, B. & Bakacs, T. Comparison of lysis of bromelin and papain treated red cells in ADCC assays. Immunology letters 31, 237-240 (1992).
34Shukor, Y. et al. Development of a heavy metals enzymatic-based assay using papain. Analytica Chimica Acta 566, 283-289 (2006).
35Afaq, S. & Iqbal, J. Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. Electronic Journal of Biotechnology 4, 120-124 (2001).
36Mitchel, R., Chaiken, I. & Smith, E. The complete amino acid sequence of papain. Additions and corrections. Journal of Biological Chemistry 245, 3485-3492 (1970).
37http://chemistry.umeche.maine.edu/CHY431/Peptidase9.html.
38Elliott F. Osserman, R. E. C., Sherman Beychok. Lysozyme. (Academic Press, 1974).
39Cunningham, F., Proctor, V. & Goetsch, S. Egg-white lysozyme as a food preservative: an overview. World''s Poultry Science Journal 47, 141-163 (2009).
40Fuglsang, C., Johansen, C., Christgau, S. & Adler-Nissen, J. Antimicrobial enzymes: applications and future potential in the food industry. Trends in Food Science & Technology 6, 390-396 (1995).
41Marchal, R., Chaboche, D., Douillard, R. & Jeandet, P. Influence of lysozyme treatments on champagne base wine foaming properties. J. Agric. Food Chem 50, 1420-1428 (2002).
42Delfini, C. et al. Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts. J. Agric. Food Chem 52, 1861-1866 (2004).
43Tenovuo, J. Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral diseases 8, 23-29 (2002).
44Proctor, V., Cunningham, F. & Fung, D. The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition 26, 359-395 (1988).
45Blake, C. C. F. et al. Structure of Hen Egg-White Lysozyme - a 3-Dimensional Fourier Synthesis at 2a Resolution. Nature 206, 757-760 (1965).
46van den Berg, B., Chung, E. W., Robinson, C. V. & Dobson, C. M. Characterisation of the dominant oxidative folding intermediate of hen lysozyme. Journal of Molecular Biology 290, 781-796 (1999).
47Dobson, C. M., Evans, P. A. & Radford, S. E. Understanding How Proteins Fold - the Lysozyme Story So Far. Trends in Biochemical Sciences 19, 31-37 (1994).
48Raccosta, S. et al. Irreversible gelation of thermally unfolded proteins: structural and mechanical properties of lysozyme aggregates. European Biophysics Journal 39, 1007-1017 (2010).
49Rother, K. Diabetes treatment--bridging the divide. New England Journal of Medicine 356, 1499-1501 (2007).
50Sanger, F., Thompson, E. & Kitai, R. The amide groups of insulin. Biochemical Journal 59, 509-518 (1955).
51Brown, H., Sanger, F. & Kitai, R. The structure of pig and sheep insulins. Biochemical Journal 60, 556-565 (1955).
52Ryle, A., Sanger, F., Smith, L. & Kitai, R. The disulphide bonds of insulin. Biochemical Journal 60, 541-556 (1955).
53Wang, S., Liu, K. & Han, T. Amyloid fibrillation and cytotoxicity of insulin are inhibited by the amphiphilic surfactants. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1802, 519-530 (2010).
54Stryer, L. Bioochemistry,(New york 1995)
55Nielsen, L., Frokjaer, S., Brange, J., Uversky, V. & Fink, A. Probing the Mechanism of Insulin Fibril Formation with Insulin Mutants. Biochemistry 40, 8397-8409 (2001).
56Hua, Q. & Weiss, M. Mechanism of insulin fibrillation: The structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. Journal of Biological Chemistry 279, 21449-21460 (2004).
57Smith, G., Pangborn, W. & Blessing, R. The structure of T6 bovine insulin. Acta Crystallographica Section D: Biological Crystallography 61, 1476-1482 (2005).
58http://www.betacell.org/content/articles/?aid=8.
59Kim, T., Rhee, A. & Yip, C. Force-induced insulin dimer dissociation: a molecular dynamics study. Journal of the American Chemical Society 128, 5330 (2006).
60Blundell, T., Dodson, G., Hodgkin, D. & Mercola, D. Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv. Protein Chem 26, 279-402 (1972).
61Ivanova, M., Sievers, S., Sawaya, M., Wall, J. & Eisenberg, D. Molecular basis for insulin fibril assembly. Proceedings of the National Academy of Sciences 106, 18990 (2009).
62http://www.endotext.org/diabetes/diabetes3_new/diabetesframe3.htm.
63Tjong, H. & Zhou, H. Prediction of protein solubility from calculation of transfer free energy. Biophysical journal 95, 2601-2609 (2008).
64Cabral, J.M.S et al. Applied biocatalysis. (1994).
65Cao, L. Carrier-bound immobilized enzymes: principles, applications and design. (2005).
66Betancor, L. & Luckarift, H. Bioinspired enzyme encapsulation for biocatalysis. Trends in biotechnology 26, 566-572 (2008).
67Panke, S. & Wubbolts, M. Enzyme technology and bioprocess engineering. Current opinion in biotechnology 13, 111-116 (2002).
68Sheldon, R. Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis 349, 1289-1307 (2007).
69Katchalski-Katzir, E. & Kraemer, D. EupergitR C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic 10, 157-176 (2000).
70Lozinsky, V. et al. Polymeric cryogels as promising materials of biotechnological interest. Trends in biotechnology 21, 445-451 (2003).
71Bryjak, J. & Kolarz, B. Immobilisation of trypsin on acrylic copolymers process. Biochemistry 33, 409-417 (1998).
72Roy, J. & Abraham, T. Strategies in making cross-linked enzyme crystals. Chemical reviews 104, 3705-3722 (2004).
73De Jong, W. & Borm, P. Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine 3, 133 (2008).
74Marcato, P. & Duran, N. New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8, 2216-2229 (2008).
75Nie, S., Xing, Y., Kim, G. & Simons, J. Nanotechnology applications in cancer. Annual Review of Biomedical Engineering 9, 257-288 (2007).
76Fei, L. & Perrett, S. Effect of nanoparticles on protein folding and fibrillogenesis. International Journal of Molecular Sciences 10, 646-655 (2009).
77Lynch, I. & Dawson, K. Protein-nanoparticle interactions. Nano Today 3, 40-47 (2008).
78Kaufman, E. et al. Probing Protein Adsorption onto Mercaptoundecanoic Acid Stabilized Gold Nanoparticles and Surfaces by Quartz Crystal Microbalance and [zeta]-Potential Measurements. Langmuir 23, 6053-6062 (2007).
79Heegaard, P., Boas, U. & Otzen, D. Dendrimer effects on peptide and protein fibrillation. Macromolecular bioscience 7, 1047-1059 (2007).
80Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition 43, 6042-6108 (2004).
81Aili, D. et al. Folding induced assembly of polypeptide decorated gold nanoparticles. J. Am. Chem. Soc 130, 5780-5788 (2008).
82Cedervall, T. et al. Understanding the nanoparticle¡Vprotein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences 104, 2050 (2007).
83Van Hest, J. Biosynthetic-synthetic polymer conjugates. Polymer Reviews 47, 63-92 (2007).
84Wong, M., Cha, J., Choi, K., Deming, T. & Stucky, G. Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters 2, 583-587 (2002).
85Asuri, P., Karajanagi, S., Vertegel, A., Dordick, J. & Kane, R. Enhanced stability of enzymes adsorbed onto nanoparticles. Journal of Nanoscience and Nanotechnology, 74, 1675-1678 (2007).
86Palocci, C. et al. Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Biomacromolecules 8, 3047-3053 (2007).
87Linse, S. et al. Nucleation of protein fibrillation by nanoparticles. Proceedings of the National Academy of Sciences 104, 8691-8696 (2007).
88Podolski, I. et al. Effects of Hydrated Forms of C60 Fullerene on Amyloid-Peptide Fibrillization In Vitro and Performance of the Cognitive Task. Journal of Nanoscience and Nanotechnology, 74, 1479-1485 (2007).
89Deming, T. Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Advanced drug delivery reviews 54, 1145-1155 (2002).
90Rosler, A., Vandermeulen, G. & Klok, H. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced drug delivery reviews 53, 95-108 (2001).
91Kwon, G. & Okano, T. Polymeric micelles as new drug carriers. Advanced drug delivery reviews 21, 107-116 (1996).
92Soppimath, K., Aminabhavi, T., Kulkarni, A. & Rudzinski, W. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release 70, 1-20 (2001).
93Lherm, C., Muller, R., Puisieux, F. & Couvreur, P. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. International Journal of Pharmaceutics 84, 13-22 (1992).
94Cabaleiro-Lago, C., Lynch, I., Dawson, K. & Linse, S. Inhibition of IAPP and IAPP (20- 29) Fibrillation by Polymeric Nanoparticles. Langmuir 26, 3453-3461 (2010).
95Cabaleiro-Lago, C. et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. Journal of the American Chemical Society 130, 15437-15443 (2008).
96Kim, J. & Lee, M. Fullerene inhibits beta-amyloid peptide aggregation. Biochemical and Biophysical Research Communications 303, 576-579 (2003).
97Nayak, A., Dutta, A. & Belfort, G. Surface-enhanced nucleation of insulin amyloid fibrillation. Biochemical and Biophysical Research Communications 369, 303-307 (2008).
98Cabaleiro-Lago, C., Quinlan-Pluck, F., Lynch, I., Dawson, K. & Linse, S. Dual Effect of Amino Modified Polystyrene Nanoparticles on Amyloid beta Protein Fibrillation. ACS Chemical Neuroscience 1, 279-287 (2010).
99Klajnert, B., Cortijo-Arellano, M., Cladera, J. & Bryszewska, M. Influence of dendrimer''s structure on its activity against amyloid fibril formation. Biochemical and Biophysical Research Communications 345, 21-28 (2006).
100Wu, W. et al. TiO2 nanoparticles promote [beta]-amyloid fibrillation in vitro. Biochemical and Biophysical Research Communications 373, 315-318 (2008).
101Murphy, R. M. Peptide aggregation in neurodegenerative disease. Annual Review of Biomedical Engineering 4, 155-174 (2002).
102Khurana, R. et al. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40, 3525-3535 (2001).
103Makin, O. S. & Serpell, L. C. Structures for amyloid fibrils. Febs Journal 272, 5950-5961 (2005).
104Dobson, C. M. Principles of protein folding, misfolding and aggregation. Seminars in Cell & Developmental Biology 15, 3-16 (2004).
105Harper, J. D. & Lansbury, P. T. Models of amyloid seeding in Alzheimier''s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual Review of Biochemistry 66, 385-407 (1997).
106Nilsson, M. R. Techniques to study amyloid fibril formation in vitro. Methods 34, 151-160, (2004).
107Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual review of neuroscience 26, 267-298, (2003).
108Krebs, M. R. H. et al. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. Journal of Molecular Biology 300, 541-549 (2000).
109Fandrich, M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cellular and Molecular Life Sciences 64, 2066-2078, (2007).
110Krebs, M. R. H., Morozova-Roche, L. A., Daniel, K., Robinson, C. V. & Dobson, C. M. Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Science 13, 1933-1938 (2004).
111Lai, Z. H., Colon, W. & Kelly, J. W. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35, 6470-6482 (1996).
112Buxbaum, J. N. Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases? Trends in Biochemical Sciences 28, 585-592 (2003).
113LeVine, H. Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta(1-40) amyloid fibrils. Archives of Biochemistry and Biophysics 342, 306-316 (1997).
114Nielsen, L. et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40, 6036-6046 (2001).
115LeVine, H. Thioflavine-T Interaction with Synthetic Alzheimers-Disease Beta-Amyloid Peptides - Detection of Amyloid Aggregation in Solution. Protein Science 2, 404-410 (1993).
116Krebs, M. R. H., Bromley, E. H. C. & Donald, A. M. The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of Structural Biology 149, 30-37, (2005).
117Naiki, H., Higuchi, K., Hosokawa, M. & Takeda, T. Fluorometric-Determination of Amyloid Fibrils Invitro Using the Fluorescent Dye, Thioflavine-T. Analytical Biochemistry 177, 244-249 (1989).
118Ray, S. S., Singh, S. K. & Balaram, P. An electrospray ionization mass spectrometry investigation of 1-anilino-8-naphthalene-sulfonate (ANS) binding to proteins. Journal of the American Society for Mass Spectrometry 12, 428-438 (2001).
119Yamamoto, T., Fukui, N., Hori, A. & Matsui, Y. Circular dichroism and fluorescence spectroscopy studies of the effect of cyclodextrins on the thermal stability of chicken egg white lysozyme in aqueous solution. Journal of Molecular Structure 782, 60-66 (2006).
120Tachibana, H., Oka, T. & Akasaka, K. Native-like tertiary structure formation in the alpha-domain of a hen lysozyme two-disulfide variant. Journal of Molecular Biology 314, 311-320 (2001).
121Sreerama, N. & Woody, R. Computation and analysis of protein circular dichroism spectra. Methods in enzymology 383, 318-351 (2004).
122Greenfield, N. & Fasman, G. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108-4116 (1969).
123Lakowicz, J. & Masters, B. Principles of fluorescence spectroscopy. Journal of Biomedical Optics 13, 029901 (2008).
124Ladokhin, A. Fluorescence spectroscopy in peptide and protein analysis. Encyclopedia of analytical chemistry, 5762-5779 (2000).
125Brown, R., Jarvis, K. & Hyland, K. Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical Biochemistry 180, 136-139 (1989).
126Smith, P. et al. Measurement of protein using bicinchoninic acid.. Analytical Biochemistry 150, 76-85 (1985).
127Lazo-Wasem, E. Standardization of papain activity: Report of a collaborative study. Journal of Pharmaceutical Sciences 55, 723-725 (2006).
128Smith, B. J. SDS polyacrylamide gel electrophoresis of proteins. Methods in Molecular Biology; Basic protein and peptide protocols 1, 23-34 (1994).
129Gasparda, J., Silasa, J., Shantza, D. & Janb, J. Supramolecular assembly of lysine-b-glycine block copolypeptides at different solution conditions. Supramolecular Chemistry 22, 178-185 (2009).
130Jan, J. & Shantz, D. Biomimetic silica formation: Effect of block copolypeptide chemistry and solution conditions on silica nanostructure. Advanced Materials 19, 2951-2956 (2007).
131Hawkins, K., Wang, S., Ford, D. & Shantz, D. Poly-L-lysine templated silicas: using polypeptide secondary structure to control oxide pore architectures. Journal of the American Chemical Society 126, 9112-9119 (2004).
132Edwin, F. & Jagannadham, M. Sequential Unfolding of Papain in Molten Globule State. Biochemical and Biophysical Research Communications 252, 654-660 (1998).
133Naeem, A., Fatima, S. & Khan, R. Characterization of partially folded intermediates of papain in presence of cationic, anionic, and nonionic detergents at low pH. Biopolymers 83, 1-10 (2006).
134Wang, S., Liu, K., Wu, C. & Lai, J. Investigating the influences of redox buffer compositions on the amyloid fibrillogenesis of hen egg-white lysozyme. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 1794,1663-1672 (2009).
135Wang, S., Chou, S., Liu, K. & Wu, C. Effects of glutathione on amyloid fibrillation of hen egg-white lysozyme. International journal of biological macromolecules 45,321-329 (2009).
136Xu, M. et al. The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein Science: A Publication of the Protein Society 16, 815-832 (2007).
137Xu, M., Ermolenkov, V., Uversky, V. & Lednev, I. Hen egg white lysozyme fibrillation: a deep-UV resonance Raman spectroscopic study. Journal of Biophotonics 1, 215-229 (2008).
138Raman, B., Ramakrishna, T. & Rao, C. Refolding of denatured and denatured/reduced lysozyme at high concentrations. Journal of Biological Chemistry 271, 17067- 17072 (1996).
139Trivedi, V., Raman, B., Ramakrishna, T. & Rao, C. Detection and assay of proteases using calf lens beta-crystallin aggregate as substrate. Journal of biochemical and biophysical methods 40, 49-55 (1999).
140Mishra, R. et al. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Journal of Molecular Biology 366, 1029-1044 (2007).
141Klunk, W., Pettegrew, J. & Abraham, D. Two simple methods for quantifying low-affinity dye-substrate binding. Journal of Histochemistry and Cytochemistry 37, 1293-1297 (1989).
142Bekard, I. & Dunstan, D. Tyrosine Autofluorescence as a Measure of Bovine Insulin Fibrillation. Biophysical journal 97, 2521-2531 (2009).
143Murali, J. & Jayakumar, R. Spectroscopic studies on native and protofibrillar insulin. Journal of Structural Biology 150, 180-189 (2005).
144Wang, Y. et al. Formation of amyloid fibrils in vitro from partially unfolded intermediates of Human {gamma} C-Crystallin. Investigative Ophthalmology & Visual Science 51, 672-678 (2010).
145Andrade, J. Surface and Interfacial Aspects of Biomedical Polymers. Vol. 2. Protein Adsorption. Plenum Press, 1-80 (1985).
146Ban, T. et al. Real-time and single fibril observation of the formation of amyloid beta spherulitic structures. Journal of Biological Chemistry 281, 33677-33683 (2006).
147Elgersma, R., Posthuma, G., Rijkers, D. & Liskamp, R. Backbone-modified amylin derivatives: implications for amyloid inhibitor design and as template for self-assembling bionanomaterials. Journal of Peptide Science 13, 709-716 (2007).
148Kowalewski, T. & Holtzman, D. In situ atomic force microscopy study of Alzheimer''s beta-amyloid peptide on different substrates: New insights into mechanism of beta-sheet formation. Proceedings of the National Academy of Sciences of the United States of America 96, 3688-3693 (1999).
149Rocha, S. et al. Adsorption of amyloid beta-peptide at polymer surfaces: a neutron reflectivity study. ChemPhysChem 6, 2527-2534 (2005).
150Gordon, D. & Meredith, S. Probing the Role of Backbone Hydrogen Bonding in [beta]-Amyloid Fibrils with Inhibitor Peptides Containing Ester Bonds at Alternate Positions. Biochemistry 42, 475-485 (2003).




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔