(3.231.166.56) 您好!臺灣時間:2021/03/08 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃綉惠
研究生(外文):Siou-Huei Huang
論文名稱:利用超臨界二氧化碳製備溫度敏感性共聚物
論文名稱(外文):Synthesis of Temperature Sensitive Copolymers In Supercritical Carbon Dioxide
指導教授:陳延平陳延平引用關係
指導教授(外文):Yan-Ping Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:超臨界二氧化碳溫度敏感性親水性單體水凝膠低臨界溶解溫度
外文關鍵詞:supercritical carbon dioxidetemperature-sensitivehydrophilic monomerhydrogelLCST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,智慧型高分子被廣泛應用於各個研究領域,其中溫度敏感性材料可應用於藥物控制釋放和生物科技材料上,此材料本身若具備生物可分解性,將更增加其應用價值。一般合成方法所使用的有機溶劑、觸媒和起始劑對於環境有較大的衝擊性,並且會造成後續產物分離程序上的困難,因此本研究利用超臨界二氧化碳技術進行此溫度敏感性材料的合成,以降低對環境的危害。
本研究選擇之溫度敏感性單體為N-isopropylacrylamide (NIPAAm),當其形成聚合物PNIPAAm時,具有約31~32 ℃的低臨界溶解溫度(lower critical solution temperature, LCST),而當NIPAAm與親水性單體共聚,能提升PNIPAAm的LCST。本研究欲探討不同的親水性單體與NIPAAm共聚時,是否皆能將PNIPAAm的LCST提升至人體溫度(37 ℃)附近,以利於後續藥物包覆材料的應用。
本研究所使用的親水性單體分別為Methacrylic acid(MAA)和N-Methyl-N- vinylacetamide(MVA),藉由NIPAAm分別與兩親水性單體MAA和MVA共聚合,形成P(NIPAAm-co-MAA)與P(NIPAAm-co-MVA)共聚物,並由FTIR、UV、TGA和SEM等儀器進行分析。首先經由FTIR分析,確認兩共聚物的化學結構,接著由UV分析,發現於純水系統中,只有P(NIPAAm-co-MVA)能將LCST提升至37 ℃左右,而P(NIPAAm-co-MAA)則須在鹼性的環境(pH值為8.67)下,才有提升作用;若將兩共聚物加入交聯劑,則皆能使LCST提升。藉由TGA分析可觀察兩種共聚高分子的熱穩定性,而由SEM圖,可觀察到兩共聚物皆可藉由加入交聯劑,使得粒徑變小;另一方面,P(NIPAAm-co-MAA)會隨著MAA含量增加,使顆粒分散性更好,粒徑亦能變小,可降低至0.068 µm。


In recent years, the intelligent materials with biodegradable have been employed in research and development for the drug delivery and biological processes. Supercritical fluid technology has the advantages of reducing significantly the amount of solvent in traditional process. It can also avoid the oxidation of initiators, and simplify the following separation steps. In this research we synthesize the temperature sensitive materials by using the supercritical carbon dioxide to protect the environment.
Poly(N-isopropylacylamide), PNIPAAm, is a thermoresponsive polymer that has lower critical solution temperature(LCST) around 31~32 ℃ in aqueous solution. In this study, PNIPAAm copolymers with hydrophilic comonomers, Methacrylic acid (MAA) and N-Methyl-N-vinylacetamide (MVA), were synthesized in order to obtain copolymers with LCST slightly higher than the physiological temperature(37 ℃), as required by a drug delivery concept.
The two copolymers, P(NIPAAm-co-MAA) and P(NIPAAm-co-MVA), were examined using FTIR to confirm their chemical structures. In UV analysis, we found that only the LCST of P(NIPAAm-co-MVA) could be promoted to around 37 ℃ in aqueous solution. However the LCST of P(NIPAAm-co-MAA) can be increased in base solution (pH=8.67). In TGA analysis, the thermal stability of copolymers can be observed. In SEM images, We observed that the particle size of two copolymers all became smaller by adding the crosslinkers, and the particle size of P(NIPAAm-co- MAA) can be reduced to 0.068µm by increasing the amount of MAA.


目錄

中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1超臨界流體(Supercritical Fulid, SCF)的簡介 1
1-2超臨界流體反應(SCF Reaction)的簡介 2
1-2-1超臨界二氧化碳高分子合成 3
1-2-2超臨界流體反應的應用 6

第二章文獻回顧 8
2-1智慧型材料的介紹 8
2-1-1智慧型材料的合成方法 8
2-1-2 智慧型材料的應用 9
2-2 溫度敏感性高分子的介紹 10
2-2-1 溫度敏感性高分子的種類 11
2-2-2 溫度敏感性高分子的應用 12
2-3 研究目的 13

第三章實驗方法與步驟 15
3-1實驗藥品與儀器 15
3-1-1實驗藥品 15
3-1-2實驗儀器 17
3-1-3實驗裝置 17
3-2實驗分析儀器 18
3-3 實驗步驟 20
3-3-1溫度敏感性聚合物PNIPAAm的合成實驗 20
3-3-2溫度敏感性共聚物P(NIPAAm-co-MAA)與
P(NIPAAm-co-MVA)的合成實驗 21
3-4 分析方法 22
3-4-1結構分析 22
3-4-2 外觀形狀及顆粒大小分析 22
3-4-3 溫度敏感性分析 22
3-4-4 熱性質分析 23
3-4-5 產物回收率計算 23

第四章實驗結果與討論 24
4-1 利用超臨界二氧化碳合成PolyNIPAAm的結果與討論 24
4-1-1 反應機制與結構變化的討論 25
4-1-2 PolyNIPAAm的FTIR分析 25
4-1-3 PolyNIPAAm的溫度敏感性分析 25
4-2 利用超臨界二氧化碳合成Poly(NIPAAm-co- MAA)的結果與討論 26
4-2-1 反應機制與結構變化的討論 26
4-2-2 Poly(NIPAAm-co- MAA)的FTIR分析 27
4-2-3 Poly(NIPAAm-co- MAA)的溫度敏感性分析 27
4-2-4 Poly(NIPAAm-co- MAA)的TGA分析 29
4-2-5 Poly(NIPAAm-co- MAA)的SEM分析 29
4-2-6 Poly(NIPAAm-co- MAA)的回收率分析 30
4-3 利用超臨界二氧化碳合成Poly(NIPAAm-co- MVA)的結果與討論 31
4-3-1 反應機制與結構變化的討論 31
4-3-2 Poly(NIPAAm-co- MVA)的FTIR分析 31
4-3-3 Poly(NIPAAm-co- MVA)的溫度敏感性分析 32
4-3-4 Poly(NIPAAm-co- MVA)的TGA分析 33
4-3-5 Poly(NIPAAm-co- MVA)的SEM分析 33
4-3-6 Poly(NIPAAm-co- MVA)的回收率分析 34

第五章結論 35
參考文獻 71


Adamsky F. A., Beckman E. J., Inverse Emulsion Polymerization of Acrylamide in Supercritical CO2, Macromolecules 27(1994) 312-314.

Alvarez-Lorenzo, C., Concheiro, A., Reversible adsorption by a pH-and temperature-sensitive acrylic hydrogel, J. Control. Release 80(2002) 247-257.

Bermejo, M. D., Cocero, M. J., Supercritical Water Oxidation: A Technical Review, AIChE J. 52(2006) 3933-3951.

Binder, H., Petraru, L., Weinstabl, H., Gloger, D., Sachsenhofer, R., Hard and Soft Capsules: From Branched Polymers to Controlled Release via Gels, Macromol. Symp. 254(2007) 62-66.

Cao, L. Q., Chen, L. P., Chen, X. J., Zuo, L. H., Li, Z. W., Synthesis of smart core-shell polymer in supercritical carbon dioxide, Polymer 47(2006) 4588-4595.

Cao, L., Chen, L., Lai, W., Precipitation copolymerization of N-isopropylacrylamide and acrylic acid in supercritical carbon dioxide, J. Polym. Sci. Part A: Polym. Chem. 45(2007) 955-962.

Cao, L. Q., Chen, L. P., Cui, P. Y., Wang, J. D., Synthesis of PNIPA/PDMS-g-PAA Core-Shell Composites in Supercritical Carbon Dioxide, J. Appl. Polym. Sci. 108(2008) 3843-3850.

Cooper, A. I., Polymer synthesis and processing using supercritical carbon dioxide, J. Mater. Chem. 10(2000) 207-234

Chambon, P., Cloutet, E., Cramail, H., Tassaing, T., Besnard, M., Synthesis of core-shell polyurethane-polydimethylsiloxane particles in cyclohexane and in supercritical carbon dioxide used as dispersant media: a comparative investigation, Polymer 46(2005) 1057-1066.

Chang, Y. W., Lee, D., Bae, S. Y., Preparation of polyethylene-octene elastromoer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide, Polym. Int. 55(2006) 184-189.

Consani, K. A.; Smith, R. D., Observations on the Solubility of Surfactants and Related Molecules in Carbon Dioxide at 50℃, J. Supercrit. Fluids 3 (1990) 51-65

DeSimone, J. M., Guan Z., Elsbernd, C. S., Synthesis of Fluoropolymers in Supercritical Carbon Dioxide, Science 257(1992) 945-947

Eeckman, F., Moes, A. J., Amighi, K., Synthesis and characterization of thermosensitive copolymers for oral controlled drug delivery, European Polymer Journal 40(2004) 873–881

Freiberg, S., Zhu, X.X., Polymer microspheres for controlled drug release: review, Int. J. Pharm. 282(2004) 1-18.

Fundueanu, G., Constantin, M., Ascenzi, P., Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs, Biomaterials 29(2008) 2767-2775.

Guo, B. L., Yuan, J. F., Yao, L., Gao, Q. Y., Preparation and release profiles of pH/temperature-responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel, Colloid Polym. Sci. 285(2007a) 665-671.

Guo, B. L., Yuan, J. F., Gao, Q. Y., Preparation and characterization of temperature and pH-sensitive chitosan material and its controlled release on coenzyme A, Coll. Surfaces B: Biointerfaces 58(2007b) 151-156.

Hagiwara, M., Mitsui H., Machi, S. et al., Liquid Carbon Dioxide as a solvent for the Radiation Polymerization of Ethylene, J. Polym. Sci. Part-A 6(3) (1968) 603.

Hagiwara, M., Mitsui, H., Machi, S., Kagiya, T., Kinetics of the r-Radiation Induced Polymerization of Ethylene in Liquid Carbon Dioxide, J. Polym. Sci. part A-1 6(3) (1968) 609-621.

He, C. L., Kim, S. W., Lee, D. S., In situ gelling stimli-sensitive block copolymer hydrogels for drug delivery, J. Control. Release 127(2008) 189-207.

Hoffman, A. S., Stayton, P. S., Bioconjugates of Smart Polymers and Proteins: Synthesis and Applications, Macromol. Symp. 207(2004) 139-151.

Kataoka, K., Harada, A., Nagasaki, Y., Block copolymer micelles for drug delivery: Design, characterization and biological significance, Adv. Drug Deliv. Rev. 47 (2001) 113-131.

Kim, I. Y., Kim., S. J., Shin, M. S., pH- and thermal characteristics of graft hydrogels based on chitosan and poly(dimethylsiloxane), J. Appl. Polym. Sci. 85(2002) 2661-2666.

Kim, S. J., Lee, C. K., Lee, Y. M., Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid-poly(vinyl alcohol) interpenetrating polymer networks, React. Funct. Polym. 55(2003) 291-298.

Kim, M. S., Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2, Chemosphere 58(2005) 459-465.

King, J. W., Williams, L. L., Utilization of critical fluids in processing semiconductors and their related materials, Curr. Opin. Solid State Mater. Sci. 7(2003) 413-424.

Knez, Z., Habulin, M., Primozic, M., Enzymatic reactions in dense gases, Biochem. Eng. J. 27(2005) 120-126.

Koegler, W. S., Patrick, C., Cima, M. J., Griffith, L. G., Carbon dioxide extraction of residual chloroform form biodegradable polymer, J. Biomed. Mater. Res., 63(2002) 567-576.

Lee, C. F., Wen, C. J, Chiu, W. Y., Synthesis of Poly(chitosan-N-isopropylacrylamide) Complex Particles with the Method of Soapless Dispersion Polymerization, J. Polym. Sci. Part A: Polym. Chem. 41(2003) 2053–2063.

Lee, S. B., Ha, D. I., Cho, S. K., Kim, S. J., Lee, Y. M., Temperature/pH-Sensitive Comb-Type Graft Hydrogels Composed of Chitosan and Poly(N-isopropylacrylamide), J. Appl. Polym. Sci. 92(2004) 2612-2620.

Li, G. Y., Shi, L. Q., An, Y. G., Zhang, W. Q., Ma, R. J., Double-responsive core-shell-corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide), Polymer 47(2006) 4581-4587.

Liu, R., Fraylich, M., Saunders, B. R., Thermoresponsive copolymers:from fundamental studies to applications, Colloid. Polym. Sci. 287 (2009) 627-643.

Majerik, V., Charbit, G., Badens, E., Horvath, G., Bioavailability enhancement of an active substance by supercritical antisolvent precipitation, J. Supercrit. Fluids 40(2007) 101-110.

Maury E. E., Batten H. J., Killian S. K. et al., Graft Copolymer Surfactants for Supercritical Carbon Dioxide Applications, Polym. Prepr. 34(1993) 664-665.

Melendez-Qrtiz, H. I., Bucio, E., Radiation synthesis of a thermo-pH responsive binary graft copolymer (PP-g-DMAEMA)-g-NIPAAm by a two step method, Polym. Bull. 61(2008) 619-629.

Park, S. Y., Lee, Y. H., Bae, K. H., Ahn, C. H., Park, T. G., Temperature/pH-Sensitive Hydrogels Prepared from Pluronic Copolymers End-Capped with Carboxylic Acid Groups via an Oligolactide Spacer, Macromol. Rapid Commun. 28(2007) 1172-1176.

Peck D. G., Johnston K. P., Lattice Fluid Self-Consistent Field Theory of Surfaces with Anchored Chains. Macromolecules, 26(1993) 1537-1545.

Reverchon, E., Caputo, C., Correra, S., Cesti, P., Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale, J. Supercrit. Fluids 26(2003) 253-261.

Reverchon, E., Cardea, S., Formation of polysulfone membranes by supercritical CO2, J. Supercrit. Fluids 35(2005) 140-146.

Schild, H. G. et al., Thermal Degradation of Poly(methacrylic acid):Further Studies Applying TGA/FTIR, Journal of Polymer Science: Part A 31(1993) 2403-2405.

Shieh, Y. T., Lin, Y. T., Transesterification and polymerization reactions of aliphatic polyesters in supercritical CO2 fluids without the presence of a catalyst, Eur. Polym. J. 43(2007) 1847-1856.

Sun, Z. Y., Zhang, X. R., Han, B. X., Wu, Y. Y., An, G. M., Liu, Z. M., Miao, S. D., Miao, Z. J., Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution, Carbon 45(2007) 2589-2596.

Wang, J. Q., Zhang, C. L., Liu, Z. M., Ding, K. L., Yang, Z. Z., A Simple and Efficient Route to Prepare Inorganic Compound/Polymer Composites in Supercritical Fluids, Macromol. Rapid Commun. 27(2006) 787.

Tian, P., Wu, Q., Lian, K., Preparation of temperature- and pH-sensitive, stimuli-responsive poly(N-isopropylacrylamide-co-methacrylic acid) Nanoparticles, Journal of Applied Polymer Science 108(2008) 2226-2232.

Wong, B., Yoda, S., Howdle, S. M., The preparation of gold nanoparticle composites using supercritical carbon dioxide, J. Supercrit. Fluids 42(2007) 282-287.

Yoo, M. K., Seok, W. K., Sung, Y. K., Characterization of Stimuli-Sensitive Polymers for Biomedical Applications, Macromol. Symp. 207(2004) 173-186.

Yu, M., Lu, Y., Schrinner, M., Polzer, F., Ballauff, M., Spherical Polyelectrolyte Brushes as Carriers for Catalytically Active Metal Nanoparticles, Macromol. Symp. 254(2007) 42-45.

Zou, Y. Q., Brooks, D. E., Kizhakkedathu, J. N., A Novel Functional Polymer with Tunable LCST, Macromolecules 41(2008) 5393-5405.

陳明烽,「以熱裂解法結合融合微滴電噴灑游離質譜法分析高分子聚合物」,國立中山大學化學所碩士論文,2002。

張凱、曾敏、雷毅、江璐霞,「分散聚合反應」,化學通報,第65卷,2002年

廖傳華、黃振仁,「超臨界CO2流體萃取技術」,化學工業出版社,北京,2004

吳東翰,「含天然明膠之聚乙二醇甲基丙烯酸酯網路互穿型高分子之研究」,大同大學化學工程學系碩士論文,2005。

楊超,黎鋼,何彥剛,「沉澱聚合機理及反應條件因素影響的研究」,化工中間體,第12期 2005年

陳東煌,「複合奈米粒子-有趣的人造原子」,科學發展 第408期 2006年12月 PP. 40-45。

談駿嵩、黃寶儀,「超臨界流體中之化學反應」,化工技術,超臨界流體專輯 第172卷 第7期 2007年7月號. PP. 160-167。

楊顯整,「超臨界流體綠色技術之概述」,綠基會通訊,中華民國九十八年七月,PP. 7-11

連培榮,孫傳家,「超臨界萃取的應用」,科學發展 第441期 2009年9月

談駿嵩,「超臨界流體的應用」,2002 http://milong.myweb.hinet.net/co2.htm


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔