Armand, M., Murphy, D. W., Broadhead, J. B., Steele, C. H., “Materials for Advanced Batteries,” Plenum press, New York, 145 (1980).
Arora, P. and White, R. E., “Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries,” J. Electrochem. Soc., 145, 3647-3667 (1998).
Arora, P., Doyle, M. and White, R. E., “Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes,” J. Electrochem. Soc., 146, 3543-3553 (1999).
Bard, A. J. and Faulkner, L. R., “Electrochemical Method Fundamentals and Application, 2nd ed.,” John Wiley & Sons, New York, 2001.
Bird, R.B., Stewart, W. E. and Lightfoot, E. N., “Transport Phenomena,” 2nd ed., John Wiley & Sons, New York, 2002.
Botte, G. G. and White, R. E., “Modeling Lithium Intercalation in a Porous Carbon Electrode,” J. Electrochem. Soc., 148, A54-A66 (2001).
Botte, G. G., Subramanian, V. R. and White, R. E., “Mathematical modeling of secondary lithium batteries,” Electrochimica Acta, 45, 2595–2609 (2000).
Darling, R. and Newman, J., “Modeling Side Reactions in Composite LiMn2O4 Electrodes,” J. Electrochem. Soc., 145, 990-998 (1998).
Doyle, M., Fuller, T. F. and Newman, J., “Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell,” J. Electrochem. Soc., 140, 1526-1533 (1993).
Doyle, M. and Newman, J., “Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells,” J. Electrochem. Soc., 143, 1890-1903 (1996).
Doyle, M., Newman, J., “Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process,” Journal of Applied Electrochemistry, 27, 846-856 (1997).
Fellner, J. P. and Sandhu, S. S., “Diffusion-limited model for a lithium / polymer battery,” Electrochemica Acta, 43, 1607-1613 (1998).
Fuller, T. F., Doyle, M. and Newman, J., “Simulation and Optimization of the Dual Lithium Ion Insertion Cell,” J. Electrochem. Soc., 141, 1-10 (1994).
Pancaldi, G., “Volta, Science and Culture in the Age of Enlightenment,” 1881.
Ning, G. and Popov, B. N., “Cycle Life Modeling of Lithium-Ion Batteries,” J. Electrochem. Soc., 151, A1584-A1591 (2004).
Ning, G., White, R. E., Popov, B. N., “A generalized cycle life model of rechargeable Li-ion batteries,” Electrochimica Acta, 51, 2012–2022 (2006).
Newman, J.S., “Electrochemical Systems,” Englewood Cliffs, New Jersey, 1991.
Paxton, B. and Newman, J., “Variable Diffusivily in Intercalation Materials,” J. Electrochem. Soc., 143, 1287-1292 (1996).
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., “Numerical Recipes in C: The Art of Scientific Computing,” 2nd ed., Cambridge University Press, 1993.
Ramadass, P., Haran, B., White, R. E. and Popov, B. N., “Mathematical modeling of the capacity fade of Li-ion cells,” Journal of Power Sources, 123, 230–240 (2003).
Santhanagopalan, S., Guo, Q., Ramadass, P. and White, R. E., “Review of models for predicting the cycling performance of lithium ion batteries,” Journal of Power Sources, 156, 620–628 (2006).
Shin, H. C., Pyun, S. I., “An investigation of the electrochemical intercalation of lithium into a Li1-δCoO2 electrode based upon numerical analysis of potentiostatic current transients,” Electrochimica Acta, 44, 2235-2244 (1999).
Srinivasan, V. and Newman, J., “Discharge Model for the Lithium Iron-Phosphate Electrode,” J. Electrochem. Soc., 151, A1517-A1529 (2004).
Subramanian, V. R., Yu, P., Popov, B. N. and White, R. E., “Modeling lithium diffusion in nickel composite graphite,” Journal of power sources, 96, 396-405 (2001).
Verbrugge, M. W. and Koch, B. J., “Modeling Lithium Intercalation of Single-Fiber Carbon Microelectrodes,” J. Electrochem. Soc., 143, 600-608 (1996).
Whittingham, M. S., “Electrical Energy Storage and Intercalation Chemistry,” Science, 192, 4244, 1126-1127 (1976).
Zhang, Q. and White, R. E., “Moving Boundary Model for the Discharge of a LiCoO2 Electrode,” J. Electrochem. Soc., 154, A587-A596 (2007).
林群耀,“大型鋰離子電池熱傳及電極動力之模擬”,台大化工所碩士論文 (2001).