(44.192.112.123) 您好!臺灣時間:2021/03/04 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范然軒
研究生(外文):Jan-Hsuan Fan
論文名稱:以計算流體力學模擬紊流噴射流場和A類粒子在氣-固流體化床中的流力行為
論文名稱(外文):CFD Simulation of Free Turbulent Jet Flow and Hydrodynamic Behavior of Geldart Group A Particles in Gas-Solid Fluidized Beds
指導教授:呂理平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:141
中文關鍵詞:計算流體力學噴流流體化床軸向空隙度分佈壓力擾動
外文關鍵詞:Comptuational fluid dynamicsjet flowfluidized bedsaxial voidage distributionpressure fluctuations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以計算流體力學來求解流體力學問題,以常用的商業軟體FLUENT來模擬流體流動流場,並計算出其相關的流體力學變數如速度、壓力等,最後將模擬的結果與文獻上的實驗數據作比較,來討論其正確性和可行性。
第一部分為自由紊流噴流流場的模擬,以空氣為操作流體,從口徑為1 mm的圓孔高速噴發向一近半無限大的靜止空氣流場,在軸附近形成噴流的主要流動區域,區域內的軸向速度分佈會隨著與噴口距離增加而有相對應的變化,此為噴流的自相似性,從理論分析上的解析解方法可以證明出有此性質,同樣地,亦可利用數值解的方法來驗證。
第二部份利用將氣、固兩相皆視為流體的雙流體模型來模擬氣-固流體化床,床中的粒子為A類粒子,因A類粒子粒徑小,當操作在較高氣體流速下的循環式流體化床時,粒子群傾向於聚集在一起形成絮狀物,在絮狀物影響的效應下,以原有的氣固拖曳力模型無法模擬出上稀下濃的軸向空隙度分佈,必須導入修正因子來修正原有拖曳力模型,利用修正型拖曵力模型來模擬粒徑為58 μm、密度為1780 kg/m3的 FCC粒子在固定粒子循環量下,不同的氣體流速其軸向空隙度分佈曲線,從模擬結果顯示,濃相區域的粒子濃度較實驗結果大,而稀相區域較符合實驗的結果。在決定A類粒子的最小氣泡化速度時,文獻中有人利用壓力擾動實驗數據的相關性來得到。在此分別以絕對壓力擾動法和相對壓力擾動法兩種方法來模擬粒徑為60 μm、密度為2510 kg/m3的玻璃珠在氣泡流體化時的流態,利用模擬的方式來驗證文獻中求最小氣泡化速度之方法。


Computational fluid dynamics ( CFD ) was used to solve the fluid mechanics problems by using the commercial software FLUENT in this study. The software was used to simulate flow field and calculate the relevant variables related to fluid mechanics such as velocity, pressure, etc. Finally, the simulation results were compared with the experimental data in the literatures to discuss its correctness and feasibility.
The first part of this study was free turbulent jet flow field simulation. The fluid was air, which was at high speed and emerged from a 1 mm diameter circular hole into a semi-infinite stationary air flow. The main flow region was formed near the central axis, and in that region the axial velocity distribution profile changed similarly with increasing the distance from the jet exit. This is called self-similarity of jet flow. The problem was solved analytically in early days; now it also was solved numerically for comparison.
The second part was gas-solid fluidized bed simulation. The two-fluid model ( TFM ) which considered the behavior of both gas phase and solid phase as the fluid was applied to simulate Group A particles flow pattern in the fluidized beds. Due to Geldart Group A particles, the particles which formed clusters when operating in the high gas flow circulating fluidized beds. Due to the effect of the clusters, the classical gas-solid drag force model can not simulate the dilute up and dense bottom axial voidage distribution successfully. With the help of the modified drag force model, the axial voidage distribution profile of FCC particles ( the particle size 58 μm and the density 1780 kg/m3 ) were simulated under fixed solid circulation rate but different superficial gas velocities. The simulation results showed that the particle concentration in the dense region was larger than the expected value, but in accordance with the experimental data in the dilute region.
Leu and Tsai (2009) obtained the minimum bubbling velocity of Geldart group A particles by correlation of pressure fluctuations experimental data. The glass beads ( the particle size 60 μm and the density 2510 kg/m3 ) in bubbling fluidized beds were simulated by using both absolute pressure fluctuations method and differential pressure fluctuations method respectively. The method of determining minimum bubbling velocity in the literatures could be verified by the simulations.


中文摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 XI
第1章 緒論 1
1.1 前言 1
1.2 研究方法與目的 8
第2章 文獻回顧 10
2.1 自由邊界下的圓孔紊流流場 10
2.1.1 解析解法驗證噴流的自相似性 10
2.1.2 標準 k-ε紊流模型 16
2.2 氣-固流體化床 19
2.2.1 流體化粒子分類 19
2.2.2 以粒狀動力理論為基礎的雙流體模型 24
2.2.3 修正型的氣-固拖曳力模型 33
2.2.4 循環式流體化床上升床部分的模擬方法 35
2.2.5 最小氣泡化速度與壓力擾動 39
第3章 自由紊流圓孔噴流流場的模擬 42
3.1 模擬方法 42
3.2 主導方程式 42
3.3 模擬流體設定與邊界設定 45
3.4 結果與討論 45
第4章 氣-固流體化床的模擬 63
4.1 循環式流體化床的軸向空隙度分佈 63
4.1.1 模擬方法 63
4.1.2 主導方程式 65
4.1.3 模擬床體粒子性質設定與邊界設定 65
4.1.4 結果與討論 72
4.2 利用壓力擾動法求最小氣泡化速度 88
4.2.1 模擬方法 88
4.2.2 主導方程式 88
4.2.3 模擬床體粒子性質設定與邊界設定 90
4.2.4 結果與討論 90
第5章 總結論 105
符號說明 107
參考文獻 119
附錄 128
附錄 A. FLUENT 的簡介 128
附錄 B. EMMS/ sub-grid模型中修正因子的計算 134


Abrahamsen, A. R. and D. Geldart, “Behavior of Gas–Fluidized Beds of Fine Powders Part I. Homogeneous Expansion”, Powder Technol., 26, 35–46 (1980).
Agrawal, A. and G. Verma, “Similarity Analysis of Planar and Axisymmetric Turbulent Synthetic Jets”, Int. J. Heat Mass Transfer, 51, 6194-6198 (2008).
Ali, A., N. Kechiche and H. B. Aissia, “Prandtl-Number Effects on Vertical Buoyant Jets in Forced and Mixed Convection Regimes”, Energy Convers. Manage., 48, 1435-1449 (2007).
Almuttahar, A. and F. Taghipour, “Computational Fluid Dynamics of High Density Circulating Fluidized Bed Riser: Study of Modeling Parameters”, Powder Technol., 185, 11-23 (2008).
Amano, R. S., “Turbulence Effect on the Impinging Jet on a Flat Plate”, Bulletin of the JSME, 26, 1891-1899 (1983).
Anderson, K. S., S. Sundaresan and R. Jackson, “Instabilities and the Formation of Bubbles in Fluidized Beds”, J. Fluid Mech., 303, 327-344 (1995).
Arastoopour, H. and D. Gidaspow, “Vertical Countercurrent Solids Gas Flow”, Chem. Eng. Sci., 34, 1063-1066 (1979).
Arastoopour, H., P. Pakdel and M. Adewumi, “Hydrodynamic Analysis of Dilute Gas–Solids Flow in a Vertical Pipe”, Powder Technol., 62, 163–170 (1990).
Bagnold, R. A., “Experiments on a Gravity–Free Dispersion of Large Solids Spheres in a Newtonian Fluid under Shear”, Proceedings of the Royal Society of London, A225, 49–63 (1954).
Barata, G. M. M., D. F. G. Durao and N. V. Heitor, “Single and Twin Turbulent Jets Through a Crossflow”, AIAA J., 29, 595-602 (1991).
Becker, H. A., H. C. Hottel and G. C. Williams, “The Nozzle-Fluid Concentration Field of the Round, Turbulent, Free Jet”, J. Fluid Mech., 30, 285-303 (1967).
Benyahia, S., H. Arastoopour, T. M. Knowlton and H. Massah, “Simulation of Particles and Gas Flow Behavior in the Riser Section of a Circulating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase”, Powder Technol., 112, 24–33 (2000).
Bi, H. and A. Chen, “Pressure Fluctuations in Gas-Solids Fluidized Beds”, China Particuology, 1, 139-144 (2003).
Bi, H., “A Critical Review of the Complex Pressure Fluctuation Phenomenon in Gas-Solids Fluidized Beds”, Chem. Eng. Sci., 62, 3473-3493 (2007).
Birch, A. D., D. R. Brown, M. G. Dodson and J. R. Thomas, “The Turbulent Concentration Field of a Methane Jet”, J. Fluid Mech., 88, 431-449 (1978).
Bird, R. B., W. E. Stewart and E. N. Lightfoot, “Transport Phenomena”, 2 edi., Chapter 5, Wiley, New York, NY, USA (2002).
Boemer, A., H. Qi and U. Renz, “Eulerian Simulation of Bubble Formation at a Jet in a Two-Dimensional Fluidized Bed”, Int. J. Multiphase Flow, 23, 927-944 (1997).
Boersma, B. J., G. Brethouwer and F. T. M. Nieuwstadt, “A Numerical Investigation on the Effect of the Inflow Conditions on the Self-Similar Region of a Round Jet”, Phys. Fluids, 10, 899-909 (1998).
Bokkers, G. A., M. van Sint Annaland and J. A. M. Kuipers, “Mixing and Segregation in a Bidisperse Gas-Solid Fluidized Bed : a Numerical and Experimental Study”, Powder Technol., 140, 176-186 (2004).
Boree, J., N. Atassi, G. Charnay and L. Taubert, “Measurements and Image Analysis of the Turbulent Field in an Axisymmetric Jet Subject to a Sudden Velocity Decrease”, Exp. Therm. Fluid Sci., 14, 45-51 (1997).
Broadhurst, T. E. and H. A. Becker, “Onset of Fluidization and Slugging in Beds of Uniform Particles”, AIChE J., 21, 238-247 (1975).
Cammarata, L., P. Lettieri, G. D. M. Micale and D. Colman, “2D and 3D CFD Simulations of Bubbling Fluidized Beds Using Eulerian-Eulerian Models”, Int. J. Chem. Reactor Eng., 1, 1-14 (2003).
Catalano, G. D., K. S. Chang and J. A. Mathis, “Investigation of Turbulent Jet Impingement in a Confined Crossflow”, AIAA J., 36, 1530-1535 (1989).
Chapman, S. and T. G. Cowling, “The Mathematical Theory of Non–Uniform Gases”, 3 edi., Cambridge Univ. Press, Cambridge, GB (1970).
Davidson, J. F. and D. Harrison, “Fluidized Particles”, Cambridge Univ. Press, Cambridge, GB (1963).
Di Felice, R., “The Voidage Function for Fluid–Particle Interaction System”, Int. J. Multiphase Flow, 20, 153–159 (1994).
Ding, J. and D. Gidaspow, “A Bubbling Model Using Kinetic Theory of Granular Flow”, AIChE J., 36, 523-538 (1990).
Donsi, G. and L. Massimilla, “Bubble-Free Expansion of Gas-Fluidized Beds of Fine Particles”, AIChE J., 19, 1104-1110 (1973).
Dowling, D. R. and P. E. Dimotakis, “Similarity of the Concentration Field of Gas-Phase Turbulent Jets”, J. Fluid Mech., 218, 109-141 (1990).
Fan, L. S. and C. Zhu, “Principles of Gas-Solid Flows”, Cambridge Univ. Press, New York , NY, USA (1998).
Ferschneider, G. and P. Mege, “Eulerian Simulation of Dense Phase Fluidized Beds”, Oil & Gas Science and Technology, 51, 301-307 (1996).
Foscolo, P. U., R. Di. Felice and L. G. Gibilaro, “An Experimental Study of the Expansion Characteristics of Gas Fluidized Beds of Fine Catalysts”, Chem. Eng. Process., 22, 69-78 (1987).
Gao, J., X. Lan, Y. Fan, J. Chang, G. Wang, C. Lu and C. Xu, “CFD Modeling and Validation of the Turbulent Fluidized Bed of FCC Particles”, AIChE J., 55, 1680-1694 (2009).
Garside, J. and M. R. Al–Dibouni, “Velocity–Voidage Relationships for Fluidization and Sedimentation”, Ind. Eng. Chem. Process Des. Dev., 16, 206–214 (1977).
Geldart, D., “Single Particles, Fixed and Quiescent Beds”, in “Gas Fluidization Technology”, D. Geldart, Ed., Chapter 2, John Wiley & Sons, New York, NY, USA (1986).
Geldart, D., “Type of Gas Fluidization”, Powder Technol., 7, 285–292 (1973).
Gibilaro, L. G., R. D. Felice and S. P. Waldram, “Generalized Friction Factor and Drag Coefficient Correlations for Fluid–Particle Interactions”, Chem. Eng. Sci., 40, 1817–1823 (1985).
Gidaspow, D. and B. Ettehadieh, “Fluidization in Two–Dimensional Beds with a Jet. 2. Hydrodynamic Modeling”, Ind. Eng. Chem. Fundam., 22, 193–201 (1983).
Gidaspow, D., “Multiphase Flow and Fluidization”, Academic Press, Boston, MA, USA (1994).
Gidaspow, D., R. Bezburuah and J. Ding, “Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach”, in “Fluidization VII”, O. E. Potter and D. J. Nicklin, eds., pp. 75–82, Engineering Foundation, New York, NY, USA (1992).
Grace, J. R., “Contacting Modes and Behaviour Classification of Gas–Solid and Other Two–Phase Suspensions”, Can. J. Chem. Eng., 64, 353–363 (1986).
Hanjalic, K., “Two-Dimensional Asymmetric Turbulent Flow in Ducts”, Ph.D. Thesis, Univ. of London, London, GB (1970).
Hill, R. J., D. L. Koch and J. C. Ladd, “Moderate Reynolds Number Flows in Ordered and Random Arrays of Spheres”, J. Fluid Mech., 448, 243–278 (2001).
Huilin, L., D. Gidaspow, J. Bouillard and L. Wentie, “Hydrodynamic Simulation of Gas-Solid Flow in a Riser Using Kinetic Theory of Granular Flow”, Chem. Eng. J., 95, 1-13 (2003).
Hulme, I. and A. Kantzas, “Validation of Bubble Properties of a Bubbling Fluidized Bed Reactor Using CFD with Imaging Experiments”, Polym. Plast. Technol. Eng., 44, 73-95 (2005).
Hussein, H. J., S. Capp and W. K. George, “Velocity Measurements in a High-Reynolds Number Momentum-Conserving Axisymmetric Turbulent Jet”, J. Fluid Mech., 258, 31-75 (1994).
James, R. D., J. W. Jacobs and A. Glezer, “A Round Turbulent Jet Produced by an Oscillating Diaphragm”, Phys. Fluids, 8, 2484-2495 (1996).
Jekins, J. T. and S. B. Savage, “A Theory for the Rapid Flow of Identical, Smooth, Nealy Elastic, Spherical Particles”, J. Fluid Mech., 130, 187- 202 (1983).
Jiradilok, V., D. Gidaspow, S. Damronglerd, W. J. Koves and R. Mostofi, “Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in a Riser”, Chem. Eng. Sci., 61, 5544–5559 (2006).
Johnson, P. C. and R. Jackson, “Frictional–Collisional Constitutive Relations for Granular Materials, with Application to Plane Shearing”, J. Fluid Mech., 176, 67–93 (1987).
Jones, W. P. and B. E. Launder, “The Calculation of Low-Reynolds Number Phenomena with a Two-Equation Model of Turbulence”, Int. J. Heat Mass Transfer, 16, 1119-1130 (1973).
Jung, J. and D. Gidaspow, “Bubble Computation, Granular Temperatures, and Reynolds Stresses”, Chem. Eng. Commun., 193, 946–975 (2006).
Kawaguchi, T., T. Tanaka and Y. Tsuji, “Numerical Simulation of Two-Dimensional Fluidized Beds Using the Discrete Element Method”, Powder Technol., 96, 129-138 (1998).
Launder, B. E. and D. B. Spalding, “The Numerical Computation of Turbulent Flow”, Comp. Meth. Appl. Mech., 3, 269-289 (1974).
Launder, B. E., G. J. Reece and W. Rodi, “Progress in Development of a Reynold-Stress Turbulence Closure”, J. Fluid Mech., 68, 537-556 (1975).
Lettieri, P., D. Newton and J. G. Yates, “Homogeneous Bed Expansion of FCC Catalysts, Influence of Temperature on the Parameters of the Richardson-Zaki Equation”, Powder Technol., 123, 221-231 (2002).
Leu, L. P. and F. C. Tsai, “Hydrodynamics of Geldart Group A Particles in Gas-Solid Fluidized Beds”, Korean J. Chem. Eng., 26, 513-517 (2009).
Li, J. and M. Kwauk, “Exploring Complex Systems in Chemical Engineering-the Multi-Scale Methodology”, Chem. Eng. Sci., 58, 521-535 (2003).
Li, J. H., “Multi–Scale Modeling and Method of Energy–Minimization in the Two Phase Flow”, Ph.D. Thesis, Institute of Chemical Metallurgy, Academia Sinica, Beijing, China (1987).
Li, Y. and M. Kwauk, “The Dynamics of Fast Fluidization”, in “Fluidization”, J. R. Grace and J. M. Matsen, eds., pp. 537-544, Plenum Press, New York, NY, USA (1980).
Lockwood, F. C. and H. A. Moneib, “Fluctuating Temperature Measurements in a Heated Round Free Jet”, Combin. Sci. Technol., 22, 63-81 (1980).
Lu, B., W. Wang and J. Li, “Searching for a Mesh-Independent Sub-Grid Model for CFD Simulation of Gas-Solid Riser Flows”, Chem. Eng. Sci., 64, 3437-3447 (2009).
Lubbers, C. L., G. Brethouwer and B. J. Boersma, “Simulation of the Mixing of a Passive Scalar in a Round Turbulent Jet”, Fluid Dyn. Res., 28, 189-208 (2001).
Lun, C. K. K., S. B. Savage, D. J. Jeffrey and N. Chepurniy, “Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field”, J. Fluid Mech., 140, 223–256 (1984).
Lyczkowsky, R. W., I. K. Gamwo, F. Dobran, H. Ali, B. T. Chao, M. Chao, M. Chen and D. Gidaspow, “Validation of Computed Solids Hydrodynamics and Pressure Oscillation in Bubbling Atmospheric Fluidized Bed”, Powder Technol., 76, 65-76 (1993).
McKeen, T. and T. Pugsley, “Simulation and Experimental Validation of a Free Bubbling Bed of FCC Catalyst”, Powder Technol., 129, 139–152 (2003).
Morooka, S., M. Nishinaka and Y. Kato, “Sedimentation Velocity and Expansion Ratio of Emulsion Phase in Gas-Solid Fluidized Bed”, Kagaku Kogaku Ronbunshu, 37, 485-490 (1973).
O’Brien, T. J. and M. Syamlal, “Particle Cluster Effects in the Numerical Simulation of a Circulating Fluidized Bed”, Preprint Volume for Circulating Fluidized Beds IV, A. A. Avidan, ed., pp. 430–435, AIChE, New York, NY, USA (1993).
Pain, C. C., S. Mansoorzadeh and C. R. E. de Oliveira, “A Study of Bubbling and Slugging Fluidized Beds Using the Two–Fluid Granular Temperature Model”, Int. J. Multiphase Flow, 27, 527–551 (2001).
Panchapakesan, N. R. and J. L. Lumley, “Turbulent Measurements in Axisymmetric Jets of Air and Helium. Part 1. Air Jet”, J. Fluid Mech., 246, 197-223 (1993).
Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw–Hill, New York, NY, USA (1980).
Peterson, J. E. and K. D. Hotton, “Numerical Analysis of Turbulent Cross Stresses and Pressure in the Developing Region of an Axisymmertic Jet”, Int. Comm. Heat Mass Transfer, 22, 871-883 (1995).
Polat, S. and W. J. M. Douglas, “Heat Transfer under Multiple Slot Jets Impinging on a Permeable Moving Surface”, AIChE J., 36, 1370-1378 (1990).
Prandtl, L., “Bericht uber Untersuchungen zur Ausgebildgeten Turbulenz”, Zeitschrift fur Angewandte Mathematik und Mechanik, 5, 136-139 (1925).
Prandtl, L., “Bemerkungen zur Theorie der Freien Turbulenz”, Zeitschrift fur Angewandte Mathematik und Mechanik, 22, 241-243 (1942).
Ramaprian, B. R. and M. S. Chandrasekhara, “LDA Measurements in Plane Turbulent Jets”, J. Fluids Eng., 107, 264-271 (1985).
Ranade, V. V., “Computational Flow Modeling for Chemical Reactor Engineering”, Academic Press, San Diego, California, USA (2002).
Samuelsberg, A. and B. H. Hjertager, “Computational Modeling of Gas / Particle Flow in a Riser”, AIChE J., 42, 1536-1546 (1996).
Sanders, J. P. H., B. Sarh and I. Gokalp, “Variable Density Effects in Axisymmetric Isothermal Turbulent Jets: a Comparison between a First- and a Second-Order Turbulence Model”, Int. J. Heat Mass Transfer, 40, 823-842 (1997).
Schaeffer, D. G., “Instability in the Evolution Equations Describing Incompressible Granular Flow”, J. Differ. Equ., 66, 19–50 (1987).
Schlichting, H., “Laminare Strahlausbreitung”, Zeitschrift fur Angewandte Mathematik und Mechanik, 13, 260-263 (1933).
Schlichting, H., “Boundary-Layer Theory”, 7 edi., pp. 747-750, McGraw-Hill, NewYork, NY, USA (1979).
Seyedein, S. H., M. Hasan, and A. S. Mujumdar, “Modelling of a Single Confined Turbulent Slot Jet Impingement Using Various k-ε Turbulence Models”, Appl. Math. Modelling, 18, 526-537 (1994).
Shan, R. Q. and J. J. Wang, “Experimental Studies of the Influence of Parameters on Axisymmetric Synthetic Jets”, Sensors and Actuators A, 157, 107-112 (2010).
Sinclair, D. B. and R. Jackson, “Gas-Particle Flow in a Vertical Pipe with Particle-Particle Interactions”, AIChE J., 35, 1473-1486 (1989).
Smith, B. L. and A. Glezer, “The Formation and Evolution of Synthetic Jets”, Phys. Fluids, 10, 2281-2297 (1998).
Su, M., X. Zhang and Z. Yao, “Numerical Simulation of Sound Field in Axisymmetric Jet of Incompressible Fluid”, Computers and Mathematics with Applications, 2, 140-144 (1997).
Syamlal, M. and T. J. O’Brien, “Computer Simulation of Bubbles in a Fluidized Bed”, AIChE Symp. Ser., 85, 22–31 (1989).
Taghipour, F., N. Ellis and C. Wong, “Experimental and Computational Study of Gas–Solid Fluidized Bed Hydrodynamics”, Chem. Eng. Sci., 60, 6857–6867 (2005).
Tollmien, W., “Berechnung Turbulenter Ausbreitungsvorgange”, Zeitschrift fur Angewandte Mathematik und Mechanik, 6, 468-478 (1926).
Townsend, A. A., “The Structure of Turbulent Shear Flow”, 2 edi., Chapter 6, Cambridge Univ. Press, Cambrige, GB (1976).
Tsuji, Y., T. Kawaguchi and T. Tanaka, “Discrete Particle Simulation of Two Dimensional Fluidized Bed”, Powder Technol., 77, 79-87 (1993).
Tsuo, Y. P. and D. Gidaspow, “Computation of Flow Patterns in Circulating Fluidized Beds”, AIChE J., 36, 885-896 (1990).
van Wachem, B. G. M., J. C. Schoutten and C. M. van den Bleek, “Comparative Analysis of CFD Models of Dense Gas–Solid System”, AIChE J., 47, 1035–1051 (2001).
Vejahati, F., N. Mahinpey, N. Ellis and M. B. Nikoo, “CFD Simulation of Gas–Solid Bubbling Fluidized Bed: A New Method for Adjusting Drag Law”, Can. J. Chem. Eng., 87, 19–30 (2009).
Vouros, A. and T. Panidis, “Influence of a Secondary, Parallel, Low Reynolds Number Round Jet on a Turbulent Axisymmetric Jet”, Exp. Therm. Fluid Sci., 32, 1455-1467 (2008).
Wang, J., M. A. van der Hoef and J. A. M. Kuipers, “CFD Study of the Minimum Bubbling Velocity of Geldart A Particles in Gas-Fluidized Beds”, Chem. Eng. Sci., 65, 3772-3785 (2010).
Wang, J., W. Ge and J. Li, “Eulerian Simulation of Heterogeneous Gas-Solid Flows in CFB Risers: EMMS-Based Sub-Grid Scale Model with a Revised Cluster Description”, Chem. Eng. Sci., 63, 1553-1571 (2008).
Wang, W. and J. Li, “Simulation of Gas–Solid Two–Phase Flow by a Multi–Scale CFD Approach–Extension of the EMMS Model to the Sub–Grid Level”, Chem. Eng. Sci., 62, 208–231 (2007).
Wang, W., B. Lu and J. Li, “Choking and Flow Regime Transitions: Simulation by a Multi-Scale CFD Approach”, Chem. Eng. Sci., 62, 814–819 (2007).
Wang, X. Y., F. Jiang, X. Xu, B. G. Fan, J. Lei and Y. H. Xiao, “Experiment and CFD Simulation of Gas-Solid Flow in the Riser of Dense Fluidized Bed at High Gas Velocity”, Powder Technol., 199, 203-212 (2010).
Weisgraber, H. T. and D. Liepmann, “Turbulent Structure During Transition to Self-Similarity in a Round Jet”, Exp. Fluids, 24, 210-224 (1998).
Wen, C. Y. and Y. H. Yu, “A Generalized Method for Predicting the Minimum Fluidization Velocity”, AIChE J., 12, 610–612 (1966).
Wong, H. W. and M. H. I. Baird, “Fluidization in Pulsed Gas Flow”, Chem. Eng. J., 2, 104-113 (1971).
Wygnanski, I. and H. Fiedler, “Some Measurements in the Self-Preserving Jet”, J. Fluid Mech., 38, 577-612 (1969).
Xu, G. and J. Li, “Analytical Solution of the Energy Minimization Multi-Scale Model for Gas-Solid Two-Phase Flow”, Chem. Eng. Sci., 53, 1349-1366 (1998).
Yang, N., W. Wang, W. Ge and J. Li, “CFD Simulation of Concurrent–Up Gas–Solid Flow in Circulating Fluidized Beds with Structure–Dependent Drag Coefficient”, Chem. Eng. J., 96, 71–80 (2003).
Yang, N., W. Wang, W. Ge, L. Wang and J. Li, “Simulation of Heterogeneous Structure in a Circulating Fluidized–Bed Riser by Combining the Two–Fluid Model with EMMS Approach”, Ind. Eng. Chem. Res., 43, 5548–5561 (2004).
Yates, Y. G., D. J. Cheesmann and Y. A. Sergeev, “Experimental Observations of Voidage Distribution Around Bubbles in a Fluidized Bed”, Chem. Eng. Sci., 49, 1885-1895 (1994).
Ye, M., J. Wang, M. A. van der Hoef and J. A. M. Kuipers, “Two–Fluid Modeling of Geldart A Particles in Gas–Fluidized Beds”, Particuology, 6, 540–548 (2008).
Zhang, Y. and J. M. Reese, “The Drag Force in Two Fluid Models of Gas–Solid Flows”, Chem. Eng. Sci., 58, 1641–1644 (2003).
Zimmermann, S. and F. Taghipour, “CFD Modeling of the Hydrodynamics and Reaction Kinetics of FCC Fluidized–Bed Reactors”, Ind. Eng. Chem. Res., 44, 9818–9827 (2005).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔