(3.235.108.188) 您好!臺灣時間:2021/03/07 20:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:伯斯李
研究生(外文):Antonio M. Basilio
論文名稱: 氮化鎵的光電化學特性在氫氣製備上的應用
論文名稱(外文):Photoelectrochemical Properties of GaN for Solar Hydrogen Gas Generation Applications
指導教授:陳貴賢陳貴賢引用關係陳逸聰陳逸聰引用關係
指導教授(外文):Kuei-Hsien ChenYit-Tsong Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:170
中文關鍵詞:GaNphotoeelctrochemical propertiesnanowiresthin filmwater splitting
外文關鍵詞:GaNphotoeelctrochemical propertiesnanowiresthin filmwater splitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This study aimed to investigate the photoelectrochemical properties of GaN for solar hydrogen gas applications. The thin film case is initially considered. In order to understand the effect of the polar crystallographic facets of GaN, photoelectrochemical measurements of free-standing GaN film was investigated. In 1 M HCl and 100 mW/cm2 Xe lamp illumination, the Ga-polar demonstrates a more negative onset potential compared to the N-polar surface. At more positive applied voltages, however, the N-polar shows higher photocurrent. Investigations indicate that these PEC performance profile may be explained by difference in the positions of the conduction and valence band edges of the polar surfaces.

Using a simple and inexpensive photoelectrochemical and crystallographic etching process of a GaN thin film, the hydrogen generation efficiency was increased by 100%. Prior to etching, the thin film’s efficiency at the applied bias of 0.5 V versus counter electrode in 1.0 M HCl solution is 0.37%. After etching, the efficiency doubled to 0.75%. After five hours of continuous gas collection, the unetched GaN thin film yielded a stable photocurrent of 0.41 mA cm-2 which produced 0.10 mL of H2 gas. The etched sample, on the other hand, resulted to an improved stable photocurrent of 0.83 mA cm-2 and yielded a greater volume of 0.70 mL of H2 gas, with the presence of H2 confirmed through gas chromatography.

The oxidation catalyst cobalt phosphate was also deposited as a thin film on GaN. The cobalt phosphate improved on the oxidation properties of GaN. Furthermore, the deposition of cobalt phosphate improved the photostability of the GaN surface.

Finally, GaN nanowires were tested for their photoelectrochemical performance. Nanowires were successfully synthesized through Au-catalyzed thermal reconstruction method on GaN thin film. Photoelectrochemical measurements in 1 M HCl solution under 100 mW/cm2 of Xe light illumination of the nanowire system has shown markedly improved on the performance of the GaN nanowires compared to GaN nanowires synthesized by other methods (thermal chemical vapor deposition and metallo-organic chemical vapor deposition methods). High density nanowires fabricated from the three methods shows those that were synthesized through thermal reconstruction demonstrated photocurrent that was about one order higher than those synthesized through other techniques. The improved photoelectrochemical performance is attributed to the good interfacial contact between the nanowires and the GaN thin film substrate that allows good charge transfer during the photoelectrochemical process, and some improvements in the photoelectrochemical areas. One aspect of the nanowires growth that needed to be addressed, however, is the oxygen content of the sample. Further tests indicate the presence of oxides in the system, which may be core-shell structure with the GaN, or mixed GaN-GaOx system, a N-doped Ga2O3, or an O-doped GaN system.

Table of Contents
Abstract ii
Acknowledgements vi
Table of Contents ix
List of Figures xv

Chapter 1 Introduction to Solar Hydrogen Gas Generation 1
1.1 Importance of Solar Hydrogen Gas Generation 1
1.2 Modes for Water Solar Hydrogen Gas Generation 3
1.3 Requirements for Solar Hydrogen Gas Generation 7
1.4 The Photoelectrochemical Voltammetry Curve 8
1.5 GaN for Solar Hydrogen Gas Generation 10
1.6 Objective and Approaches to the Study 13
1.7 References 15

Chapter 2 Experimental Details 17
2.1 Introduction. 17
2.2. Characterization of the GaN System 18
2.3 Electrode Preparations 18
2.4 Determination of Mott-Schottky Plots 18
2.5 Synthesis of Nanowires 19
2.6. References 21

Chapter 3 Photoelectrochemical Hydrogen Production Properties of Ga-polar and N-polar GaN
Films 23
3.1 Introduction 23
3.2. Experimental 24
3.2.1 Characterization of the Free Standing GaN 24
3.2.2 Distinguishing the Polarity of the Free Standing GaN Sample 24
3.2.3 Electrode Preparations 25
3.2.4 Determination of the Mott-Schottky Plots 26
3.3 Results and Discussion 26
3.3.1 Quality of the Free Standing GaN 26
3.3.2 Photoelectrochemical Properties of the Free Standing GaN 28
3.4 Conclusion and Summary 38
3.5 References 39

Chapter 4 Improving the Solar Hydrogen Gas Generation Property of c-Plane GaN Thin Film
through Crystallographic Etching 41

4.1. Introduction 41
4.2. Experimental 42
4.2.1 Preparation of Pristine Sample 42
4.2.2 Preparation of the Etched GaN Electrode 43
4.2.3 Determination of Mott-Schottky Plots 43
4.2.4 Determination of Photoelectrochemical Performance 44
4.2.5 H2 Gas Generation and Collection 45
4.2.6 Probing the Reasons for Efficiency Increase 46
4.3. Results and Discussion 47
4.3.1 Characterization of GaN thin film 47
4.3.2 Effects of Crystallographic Wet Etching on c-plane GaN 48
4.3.3 Obtaining Greater Degree of Crystallographic Etching 51
4.3.4 Two-Electrode Testing and Calculation of Efficiency 55
4.3.4 Probing the Reasons for Efficiency Increase 59
4.3.5.1 Estimation of the Increase in Surface Area 59
4.3.5.2 Decrease in Surface Carrier Concentration 61
4.3.5.3 Appearance of Crystallographic Planes and Stepped Edges 65
4.4 Conclusions 67
4.5 Reference 69

Chapter 5 Thin Film Deposition of Co-Based Oxidation Co-Catalysts GaN Surface for
Photostabilization. 71
5.1. Introduction. 71
5.2 Experimental Details 73
5.2.1 Preparation of the GaN Electrodes 73
5.2.2 Deposition of the Cobalt Catalyst Thin Film 74
5.2.3 Photoelectrochemical Performance 75
5.2.4 Extended Test 76
5.3. Results and Discussion 76
5.4. Conclusions 83
5.5 References 84

Chapter 6 Achieving Good Electrical Contacts Between GaN Nanowires and Thin Film through
Thermal Reconstruction of GaN Thin Film for Water Splitting Applications 87
6.1 Introduction 87
6.2 Experimental 90
6.2.1 Synthesis of GaN NWs 90
6.2.2 Preparation of the Electrodes 91
6.2.3 Determination of Photoelectrochemical Performance 91
6.2.4 Determination of Mott-Schottky Plots. 92
6.3. Results and Discussion 92
6.3.1 Characterization of GaN Nanowires Synthesized Through Thermal
Reconstruction 92
6.3.2 Photoresponse of the Different Nanowire Systems 97
6.3.3 Advantage of the Thermally-Reconstructed Nanowire System 100
6.3.3.1 Changes in Carrier Concentration 100
6.3.3.2 Changes in Electroactive Surface Area 103
6.3.3.3 Effective in Charge Separation and Effect of Porous Layer 104
6.4 On th Formation of Oxides in Thermally Reconstructed Nanowires 110
6.5 Conclusions 113
6.5 References 114

Chapter 7. Summary and Future Perspectives 117

Appendix Electrochemical Characterization and Photoresponse of InN Thin Films for Biosensing
Applications 123
A.1 Introduction 123
A.2 Experimental 125
A.2.1 Synthesis of InN thin film by Gas-Source Molecular Beam Epitaxy 125
A.2.2 Preparation of InN electrode 126
A.2.3 Determination of Electrochemical Properties 126 A.2.3.1 Determination of Potential Window 127
A.2.3.2 Determination of ΔEp 127
A.2.3.3 Electrochemical Response to Different Chemicals. 127
A.2.4 Demonstration of InN Biosensing Properties 127
A.2.5 Photoresponse of InN thin film Electrode 128
A.3 Results and Discussion 128
A.3.1 Quality of InN thin film 128
A.3.2 Potential Window 130
A.3.3 Electron Transfer Reversibility 133
A.3.4 Responses to Various Redox Chemicals 135
A.3.5 Demonstration of InN Thin Film for Biosensing Properties 137
A.3.6 Photoresponse 140
A.4 Conclusions144
A.5 References144

[1] L. R. Sheppard, J. Nowotny, Adv. Appl. Ceram. 2007, 106, 9.
[2] A. Fujishima, K. Honda, Nature 1972, 238, 37.
[3] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243.
[4] H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y. J. Kim, G. C. Yi, ACS Nano 2008, 2, 637.
[5] C. G. Walle, J. Neugebauer, Nature 2003, 423, 626.
[6] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
054708.
[7] O. Khaselev, J. A. Turner, Science 1998, 280, 425.
[8] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
[9] K. Fujii, T. Karasawa, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, L543.
[10] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, Appl. Phys. Lett.
2007, 91, 093519.
[11] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief
Commun. Rev. Pap. 2007, 46, 6573.
[12] I. M. Huygens, A. Theuwis, W. P. Gomes, K. Strubbe, Phys. Chem. Chem. Phys. 2002, 4,
2301.
[13] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, Appl.
Phys. Lett. 2007, 91, 3.
[14] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S.
Huang, C. C. Chen, Small 2008, 4, 925.

[1] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
[2] X. S. Peng, K. Koczkur, S. Nigro, A. C. Chen, Chem. Commun. 2004, 2872.
[3] B. J. Rodriquez, W.-C. Yang, R. J. Nemanich, A. Gruverman, Appl. Phys. Lett. 2005, 86,
112115.
[4] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, H.
Lth, Nano Lett. 2005, 5, 981.
[5] R. Lewandowska, J. L. Weyher, J. J. Kelly, L. Konczewicz, B. Lucznik, J. Cryst. Growth
2007, 307, 298.
[6] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
054708.

[1] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
[2] X. Q. Gong, A. Selloni, J. Phys. Chem. B 2005, 109, 19560.
[3] X. Q. Gong, A. Selloni, J. Catal. 2007, 249, 134.
[4] X. Q. Gong, A. Selloni, A. Vittadini, Abstr. Pap. Am. Chem. Soc. 2006, 231, 481.
[5] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief
Commun. Rev. Pap. 2007, 46, 6573.
[6] H. M. Ng, N. G. Weimann, A. Chowdhury, J. Appl. Phys. 2003, 94, 650.
[7] D. Zhuang, J. H. Edgar, Mat. Sci. Eng. R 2005, 48, 1.
[8] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
[9] K. Yang, Y. Dai, B. Huang, M.-H. Whangbo, Chem. Mater. 2008, 6528.
[10] D. Q. Fang, A. L. Rosa, T. Frauenheim, R. Q. Zhang, Appl. Phys. Lett. 2009, 94, 3.
[11] B. J. Rodriquez, W.-C. Yang, R. J. Nemanich, A. Gruverman, Appl. Phys. Lett. 2005, 86,
112115.
[12] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, H.
Lth, Nano Lett. 2005, 5, 981.
[13] R. Lewandowska, J. L. Weyher, J. J. Kelly, L. Konczewicz, B. Lucznik, J. Cryst. Growth
2007, 307, 298.
[14] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
054708.

[1] K. Fujii, T. Karasawa, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, L543.
[2] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, Appl. Phys. Lett.
2007, 91, 093519.
[3] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
054708.
[4] K. Fujii, K. Ohkawa, J. Electrochem. Soc. 2006, 153, A468.
[5] K. Fujii, K. Ohkawa, Jpn. J. Appl. Phys., Part 2 2005, 44, L909.
[6] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys., Part 1 2007, 46, 6573.
[7] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, E. L. Hu, Appl. Phys. Lett. 2004, 84,
3322.
[8] D. A. Stocker, E. F. Schubert, J. M. Redwing, Appl. Phys. Lett. 1998, 73, 2654.
[9] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, J. M. Redwing, J.
Electrochem. Soc. 2000, 147, 763.
[10] D. Zhuang, J. H. Edgar, Mat. Sci. Eng. R 2005, 48, 1.
[11] D. A. Stocker, E. F. Schubert, J. M. Redwing, Applied Physics Letters 1998, 73, 2654.
[12] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
[13] X. S. Peng, K. Koczkur, S. Nigro, A. C. Chen, Chem. Commun. 2004, 2872.
[14] A. Shintani, S. Minagawa, J. Electrochem. Soc. 1976, 123, 707.
[15] T. Kozawa, T. Kachi, T. Ohwaki, Y. Taga, N. Koide, J. Electrochem. Soc. 1996, 143, L17.
[16] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc, R. J. Molnar, Appl.
Phys. Lett. 2000, 77, 3532.
[17] R. Lewandowska, J. L. Weyher, J. J. Kelly, L. Konczewicz, B. Lucznik, J. Cryst. Growth
2007, 307, 298.
[18] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun.
Rev. Pap. 2007, 46, 6573.
[19] D. R. e. Lide, CRC Handbook of Chemistry and Physics, CRC Press LLC, 2002-2003.
[20] P. Holt-Hindle, Q. F. Yi, G. S. Wu, K. Koczkur, A. C. Chen, J. Electrochem. Soc. 2008,
155, K5.
[21] K. Koczkur, Q. F. Yi, A. C. Chen, Adv. Mater. 2007, 19, 2648.
[22] V. Spagnol, E. Sutter, C. Debiemme-Chouvy, H. Cachet, B. Baroux, Electrochim. Acta
2009, 54, 1228.
[23] M. Sumiya, K. Ohara, T. Ohsawa, Y. Kawai, M. Shirai, S. Fuke, H. Koinurna, Y.
Matsumoto, "Photo-catalysis effect of III-V nitride film", presented at International Workshop on
Nitride Semiconductors 2006 (IWN 2006), Kyoto, JAPAN, Oct 22-27, 2006.
[24] P. Atkins, J. de Paula, Atkins'' Physical Chemistry, Oxford University Press, Oxford
University 2006.
[25] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
[26] C. H. Cho, M. H. Han, D. H. Kim, D. K. Kim, Mater. Chem. Phys. 2005, 92, 104.

[1] R. van de Krol, Y. Q. Liang, J. Schoonman, J. Mater. Chem. 2008, 18, 2311.
[2] R. Memming, Semiconductor Electrochemistry, Wiley, Weinheim 2000.
[3] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
[4] M. W. Kanan, Y. Surendranath, D. G. Nocera, Chem. Soc. Rev. 2009, 38, 109.
[5] D. A. Lutterman, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 3838.
[6] D. K. Zhong, J. W. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc. 2009, 131, 6086.
[7] E. M. P. Steinmiller, K. S. Choi, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20633.
[8] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
[9] K. Fujii, K. Kusakabe, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, 7433.

[1] R. van de Krol, Y. Q. Liang, J. Schoonman, J. Mater. Chem. 2008, 18, 2311.
[2] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao, J. Z. Zhang, Small 2009, 5, 104.
[3] N. K. Allam, K. Shankar, C. A. Grimes, J. Mater. Chem. 2008, 18, 2341.
[4] Q. Q. Chen, D. S. Xu, Z. Y. Wu, Z. F. Liu, Nanotechnol. 2008, 19.
[5] D. Eder, M. Motta, A. H. Windle, Nanotechnol. 2009, 20.
[6] M. Z. Hu, P. Lai, M. S. Bhuiyan, C. Tsouris, B. H. Gu, M. P. Paranthaman, J. Gabitto, L.
Harrison, J. Mater. Sci. 2009, 44, 2820.
[7] M. A. Khan, M. S. Akhtar, S. I. Woo, O. B. Yang, Catal. Comm. 2008, 10, 1.
[8] E. Y. Kim, J. H. Park, G. Y. Han, J. Power Sources 2008, 184, 284.
[9] C. J. Lin, Y. T. Lu, C. H. Hsieh, S. H. Chien, Appl. Phys. Lett. 2009, 94.
[10] S. Y. Kuang, L. X. Yang, S. L. Luo, Q. Y. Cai, Appl. Surf. Sci. 2009, 255, 7385.
[11] Y. X. Yin, Z. G. Jin, F. Hou, Nanotechnol. 2007, 18.
[12] K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. F. Yan, M. Al-Jassim, J. Turner, J. Power
Sources 2008, 176, 387.
[13] K.-S. Ahn, Y. San, S. Shet, K. Jones, T. G. Deutsch, J. A. Turner, M. Al-Jassim, Appl.
Phys. Lett. 2008, 93, 163117.
[14] J. S. Jang, C. J. Yu, S. H. Choi, S. M. Ji, E. S. Kim, J. S. Lee, J. Catal. 2008, 254, 144.
[15] G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, Electrochem. Commun. 2007, 9,
2784.
[16] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao, J. Z. Zhang, Adv. Func. Mater.
2009, 19, 1849.
[17] X. Yang, A. Wolcottt, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li,
Nano Lett. 2009, 9, 2331.
[18] Y. J. Hwang, A. Boukai, P. D. Yang, Nano Lett. 2009, 9, 410.
[19] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, Appl.
Phys. Lett. 2007, 91, 3.
[20] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C.
Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 2001, 123, 2791.
[21] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
[22] C. Y. Zhi, X. D. Bai, E. G. Wang, Appl. Phys. Lett. 2004, 85, 1802.
[23] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
054708.
[24] S. L. Chou, F. Y. Cheng, J. Chen, J. Power Sources 2006, 162, 727.
[25] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, Appl. Phys. Lett.
2007, 91, 093519.
[26] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S.
Huang, C. C. Chen, Small 2008, 4, 925.

[1] K. Fujii, K. Kusakabe, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, 7433.

[1] G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, M. Eickhoff, Adv. Funct. Mater.
2003, 13, 841.
[2] J. L. Chiang, Y. C. Chen, J. C. Chou, Jpn. J. Appl. Phys. 1 2001, 40, 5900.
[3] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, M. Eickhoff,
Appl. Phys. Lett. 2003, 83, 177.
[4] Y. Alifragis, G. Konstantinidis, A. Georgakilas, N. A. Chaniotakis, Electroanal. 2005, 17,
527.
[5] C. P. Chen, A. Ganguly, C. H. Wang, C. W. Hsu, S. Chattopadhyay, Y. K. Hsu, Y. C.
Chang, K. H. Chen, L. C. Chen, Anal. Chem. 2009, 81, 36.
[6] A. Ganguly, C. P. Chen, Y. T. Lai, C. C. Kuo, C. W. Hsu, K. H. Chen, L. C. Chen, J.
Mater. Chem. 2009, 19, 928.
[7] N. A. Chaniotakis, Y. Alifragis, G. Konstantinidis, A. Georgakilas, Anal. Chem. 2004, 76,
5552.
[8] B. S. Kang, F. Ren, L. Wang, C. Lofton, W. W. Tan, S. J. Pearton, A. Dabiran, A.
Osinsky, P. P. Chow, Appl. Phys. Lett. 2005, 87, 023508.
[9] O. Ambacher, J. Phys. D Appl. Phys. 1998, 31, 2653.
[10] H. Lu, W. J. Schaff, L. F. Eastman, J. Appl. Phys. 2004, 96, 3577.
[11] O. Kryliouk, H. J. Park, H. T. Wang, B. S. Kang, T. J. Anderson, F. Ren, S. J. Pearton, J.
Vac. Sci. Technol. B 2005, 25, 1891.
[12] W. T. Lim, J. S. Wright, B. P. Gila, S. J. Pearton, F. Ren, W. T. Lai, L. C. Chen, M. S.
Hu, K. H. Chen, Appl. Phys. Lett. 2008, 93, 3.
[13] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, Appl. Phys.
Lett. 2002, 81, 22.
[14] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, S. J. Pearton, J.
Electron. Mater. 2006, 35, 738.
[15] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C.
Chen, C. C. Chen, Adv. Funct. Mater. 2004, 14, 233.
[16] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, S. J. Pearton,
Appl. Phys. Lett. 2005, 87.
[17] H. Lu, W. J. Schaff, L. F. Eastman, Appl. Phys. Lett. 2003, 82, 1736.
[18] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. Lett. 2004, 92,
036804.
[19] C. F. Chen, C. L. Wu, S. Gwo, Appl. Phys. Lett. 2006, 89, 252109.
[20] J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, K. H.
Chen, J. Phys. Chem. A 2007, 111, 5.
[21] W. C. Poh, K. P. Loh, W. D. Zhang, S. Triparthy, J.-S. Ye, F.-S. Sheu, Langmuir 2004,
20, 5484.
[22] E. Kohn, "Surface Energy Levels for Diamond, GaN, InN, and AlN in Contact with
Electrolytes", presented at 17th European Conference on Diamond, Diamond-Like Materials,
Carbon Nanotubes, Nitrides and Silicon Carbide, Estoril, Portugal, 2006.
[23] J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano Lett. 2001, 1, 87.
[24] R. Dimitrova, L. Catalan, D. Alexandrov, A. Chen, Electroanal. 2007, 19, 1799.
[25] R. Dimitrova, L. Catalan, D. Alexandrov, A. Chen, Electroanal. 2008, 20, 789.
[26] Y. S. Lu, C. C. Huang, J. A. Yeh, C. F. Chen, S. Gwo, App. Phys. Lett. 2007, 91, 3.
[27] M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E.
Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain, Anal. Chem. 2000, 72, 3793.
[28] T. Lindgren, M. Larsson, S. E. Lindquist, Sol. Energy Mater. Sol. Cells 2002, 73, 377.
[29] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F.
Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold,
J. Graul, E. E. Haller, Phys Status Solidi B-Basic Res 2002, 230, R4.
[30] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F.
Bechstedt, J. Furthmuller, H. Harima, V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys
Status Solidi B-Basic Res 2002, 229, R1.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鄭仁佳,〈最近逝世的老作家葉聖陶〉,《傳記文學》52:5(1988,台北),130-138
2. 柯夌伶,〈從班昭「女誡」及「世說、賢媛篇」──淺探漢魏婦女之風貌〉,《雲漢學刊》4期(1997,台南),147-162
3. 梅家玲,〈包天笑與清末民初的教育小說〉,《中外文學》409期(2006,台北),155-183
4. 趙立彬、李瑾,〈從「國民之母」到「女國民──辛亥時期婦女解放思想及其激進化」〉,《亞洲研究》53期(2006,香港),173-187
5. 周敘琪,〈閱讀與生活:惲代英的家庭生活與《婦女雜誌》之關係〉,《思與言》43:3(2005,台北),107-190
6. 鄒培元,〈我的外祖父包天笑〉,《傳記文學》98:6(2006,台北),4-25
7. 葉雅玲,〈文學史料的研究運用:以「從清末至五四前期(1898-1919)女性報刊討女性新角色的開展」為例〉,《漢學論壇》3期(2003,雲林),53-82
8. 胡曉真,〈知識消費、教化娛樂與微物崇拜——論《小說月報》與王蘊章的雜誌編輯事業〉,《中央研究院近代史研究所集刊》51期(2006,台北),55-89。
9. 游鑑明,〈千山我獨行?廿世紀前半期中國有關女性獨身的言論〉,《近代中國婦女史研究》9期(2001,台北),121-187
10. 林星廷,〈清末「女國民歌」的「新女性」形象〉,《史繹》35期(2007,台北),1-39
11. 柯惠鈴,〈從閨秀到女傑:晚清革命運動中女權思想的啟蒙〉,《近代中國》151期(2002,台北),192-213
12. 李仁淵,〈新式出版業與知識份子:以包天笑的早期生涯為例〉,《思與言》43:3(台北,2005),53-105
13. 李貞德,〈《醫心方》論「婦人諸病所由」及其相關問題〉,《清華學報》34期(2004,新竹),479-511
14. 李貞德,〈漢魏六朝的乳母〉,《中央研究院歷史語言研究所集刊》70:2 (1999,台北),439-481
15. 呂芳上,〈個人抉擇或國家政策:近代中國節育的反思──從1920年代《婦女雜誌》出版產兒制限專號說起〉,《近代中國婦女史研究》12期(2004,台北),195-230
 
系統版面圖檔 系統版面圖檔