(54.236.58.220) 您好!臺灣時間:2021/03/01 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奕丞
研究生(外文):Yi-Cheng Chen
論文名稱:多分支狀金奈米材料的製備與光催化應用
論文名稱(外文):Green Synthesis and Catalytic Application of Gold Nanomaterials
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:41
中文關鍵詞:金奈米材料綠色化學兒茶素光催化表面增強拉曼散射
外文關鍵詞:Gold nanomaterialsGreen chemistryCatechinPhotocatalysisSurface enhanced Raman scattering (SERS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用四氯金酸鈉水溶液和茶萃取物在常溫及常壓的條件下,製備多分支狀金奈米材料(Branched Gold Nanomaterials)。我們更進一步發現,調控四氯金化鈉水溶液和茶萃取物的濃度比例可以操控金奈米材料的大小及形狀,如將茶萃取物的濃度降低可獲得球型的金奈米材料。茶萃取物亦可將其他貴金屬離子如銀、鉑、鈀下還原形成不同形狀的奈米粒子。藉由如穿透式電子顯微鏡、吸收光譜儀、X-ray能量散佈分析儀、X-ray粉末繞射儀來鑑定金奈米材料的特性,發現多分支狀金奈米材料(大小為50 nm)是由金奈米棒(寬8 nm,長12 nm)所自組裝而成。經由實驗証實,茶萃取物中之多酚類扮演金離子還原形成多分支狀奈米結構及穩定奈米粒子的重要角色。由對硫醇苯甲酸(4-mercaptobenzoic acid)拉曼的實驗,我們發現此多分支狀金奈米材料具備表面增強拉曼散射的效果。我們更利用銀奈米殼層(Ag nanoshells)的沉積來使其訊號增加約為十倍,此金銀奈米複合材料可提供穩定的拉曼訊號及乾淨的表面以利修飾的潛力。在光催化部分,首先藉由多酚類與鈦金屬間之作用力(ligand to metal charge transfer),將此多分支狀金奈米材料修飾於二氧化鈦奈米材料表面。此複合材料可進一步增加催化甲基藍(methylene blue)之分解速率,在TiO2(P25)相較TiO2(P210)光催化效率分別提升2.05倍及2.50倍。本研究證實多分支狀金奈米材料及其和TiO2的複合物分別在表面增強拉曼散射基材及光催化具有發展潛力。

In this work, three-dimensional branched Au nanomaterials were produced at high yield by reacting an aqueous solution of sodium tetrachloroaurate with a tea extract at ambient temperature and pressure. By varying the tea concentrations at a constant amount of sodium tetrachloroaurate, different size and shape of Au nanomaterials were separately prepared. We also synthesized other noble metal nanoparticles such as Ag, Pt and Pd by tea extract. UV-vis absorption, energy dispersive X-ray, X-ray diffraction, and transmission electron microscopy measurements were conducted to characterize the as-prepared Au nanomaterials. The results revealed that the branched Au nanomaterials (50 nm) were formed through the self-assembly of short nanorods (8 nm in width and 12 nm in length). According to the experiments, we find out that the polyphenols in tea extract play an important role of reducing Au3+ ion to Au and stabling the branched Au nanomaterials. By conducting Raman measurements, we found that the branched Au nanomaterials was useful on enhanced signal further than 10 times through surface-enhanced Raman scattering (SERS) effect and Ag nanoshells when adopting 4-mercaptobenzoic acid as report. We believe the Au/Ag nanomaterials have the potential to be good SERS substrates because of the stable signal and clean surface. Through the interaction of polyphenol and Titanium metal (ligand to metal charge transfer), the branched Au nanomaterials were easily deposited on the surface of TiO2 nanomaterials. On the photocatalysis, we have found the photodegradation of the methylene blue is further enhanced in TiO2(P25) about 2.50 folds and TiO2(P210) about 2.05 folds through the deposition of the branched Au nanomaterials. Consequently, we believe the branched Au materials have the potential to be good SERS substrates and photocatalysis enhancers because of the stable signal and clean surface.

摘要………………………………………………………………………i
Abstract…………………………………………………………………ii
目錄……………………………………………………………………iii
圖目錄……………………………………………………………………v
表目錄…………………………………………………………………vii
第一章 綠色奈米材料導論
1.1綠色奈米材料簡介…………………………………………………………………………1
1.2 綠色奈米材料特性
1.2.1表面電漿共振(Surface Plasmon Resonance, SPR)……………3
1.2.2 量子侷限效應(Quantum Confinement)…………………………3
1.2.3 生物相容性………………………………………………………3
1.3 綠色化學合成
1.3.1水熱法………………………………………………………………5
1.3.2 光催化沉積法…………………………………………………………………………5
1.3.3 沉澱法…………………………………………………………………………6
1.4 綠色奈米材料應用
1.4.1 光催化反應………………………………………………………7
1.4.2 表面增強拉曼散射光譜應用 (Surface Enhanced Raman Scattering, SERS)………………………………………………………8
1.5 研究動機……………………………………………………………9
1.6 參考文獻……………………………………………………………10

第二章 多分支狀金奈米材料的製備及應用
2.1 實驗材料與方法
2.1.1實驗試藥……………………………………………………12
2.1.2 多分支狀金奈米材料的製備……………………………………12
2.1.3 表面增強拉曼材料
2.1.3.1對硫醇苯甲酸修飾於金奈米材料……………………………13
2.1.3.2沉積銀殼層形成金銀奈米複合材料…………………………13
2.1.4 多分支狀金奈米材料修飾於TiO2………………………………13
2.1.5 甲基藍光催化反應………………………………………………14
2.2 實驗與結果討論……………………………………………………15
2.2.1 多分支狀金奈米結構之性質測定………………………………15
2.2.2 茶萃取物對合成結構之影響……………………………………15
2.2.3 表面增強拉曼材料應用…………………………………………16
2.2.4 TiO2修飾金奈米材料光催化應用………………………………17
2.3 總結………………………………………………………………19
2.4 本章圖表…………………………………………………………20
2.5 參考文獻…………………………………………………………40


第一章
(1)P. T. Anastas, J. C. Warner, 1998, Oxford University Press: New York.

(2)Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228.

(3)Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547.

(4)(a) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607. (b) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078. (c) Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547.

(5)Quantum Dot source from http://www.qdots.com.

(6)Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature 2003, 21, 47.

(7)Zhang, N. K.; Zhang, M. Biomaterials 2002, 23, 1553.

(8)Johannsen, M.; Loening, S. J. Endourol. 2004, 18, 5.

(9)Byrappa, K.; Adschiri, T. Prog. Cryst. Growth Charact. Mater. 2007, 53, 117.

(10)陳振綸; 張益誠; 張章堂; 袁嘉敏 2009 資源與環境學術研討會, 花蓮.

(11)Vorontsov, A. V.; Savinov, E. N.; Zhensheng, J. J. Photochem. Photobiol. A 1999, 123, 113.

(12)Gyergyek, S.; Makovec, D.; Kodre, A.; Arcˇon, I.; Jagodic, M.; Drofenik, M. J. Nanopart. Res. 2010, 12, 1263.

(13)Wang, Y.-D.; Ma, C.-l.; Sun, X.-D.; Li, H.-D. Inorg. Chem. Commun. 2002, 5, 751.

(14)Cheng, F.-Y.; Su, C.-H.; Yang, Y.-S.; Yeh, C.-S.; Tsai, C.-Y.; Wu, C.-L.; Wu, M.-T.; Shieh, D.-B. Biomaterials 2005, 26, 729.

(15)(a) Robert, D.; Piscopo, A.; Weber, J.-V. Environ. Chem. Lett. 2004, 2, 5. (b) Andreozzi, R.; Canterino, M.; Marotta, R. Water Res. 2006, 40 3785.

(16)Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735.

(17)Rao, Y.; Antalek, B.; Minter, J.; Mourey, T.; Blanton, T.; Slater, G.; Slater, L.; Fornalik, J. Langmuir 2009, 25, 12713.

(18)Wold, A. Chem. Mater. 1993, 5, 280.

(19)Gao, Y. M.; Shen, H. S.; Dwight, K.; Wold, A. Mater. Res. Bull. 1992, 27, 1023.

(20)Bamwenda, G.; Tsubuta, S.; Nakamura, T.; Haruta, M. J. Photochem. Photobiol. A 1995, 89, 177.

(21)Lassaletta, G.; Gonzalez-Elipe, A. R.; Justo, A.; Fernandez, A.; Ager, F. J.; Respaldiza, M. A.; Soares, J. C.; Silva, M. F. D. J. Mate. Sco. 1996, 31, 2325.

(22)Herrmann, J. M.; Tahiri, H.; Ait-Ichon, Y.; Lassaletta, G.; Gonzalez-Elipe, A. R.; Fernandez, A. Appl. Catal. B 1997, 13, 219.

(23)Fu, X.; Zeltner, W. A.; Anderson, M. A. Appl. Catal. B 1995, 6, 209.

(24)Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. J. Phys. Chem. Lett. 1974, 26, 163.

(25)Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1.

(26)Chen, H.; Yuling, W.; Dong, S. J. Ram. Spec. 2009, 40, 1188.

(27)(a) Mariadason, J. M.; Corner, G. A.; Augenlicht, L. H. Cancer Res. 2000, 60, 4561. (b) Murase, T.; Misawa, K.; Haramizu, S.; Hase, T. Biochem. Pharmacol. 2009, 78, 78. (c) Fukuhara, K.; Nakanishi, I.; Ohkubo, K.; Obara, Y.; Tada, A.; Imai, K.; Ohno, A.; Nakamura, A.; Ozawa, T.; Urano, S.; Saito, S.; Fukuzumi, S.; Anzai, K.; Miyataag, N.; Okudaa, H. Chem. Commun. 2009, 6180.

(28)Khan, N.; Mukhtar, H. Life Sci. 2007, 81, 519.

(29)Yang, Z.; Tu, Y.; Xia, H.; Jie, G.; Chen, X.; He, P. Food Chem. 2007, 105, 1349.

(30)(a) Crozier, A.; Jaganath, I. B.; Clifford, M. N. Nat. Prod. Rep. 2009, 26, 1001. (b) Mejia, E. G. D.; Ramirez-Mares, M. V.; Puangpraphant, S. Brain, Behav., and Immun. 2009, 23, 721. (c) Fujikia, H.; Suganuma, M.; Imai, K.; Nakachi, K. Cancer lett. 2002, 188, 9.

第二章
(1)Mizukami, Y.; Sawai, Y.; Yamaguchi, Y. J. Agric. Food Chem. 2007, 55, 4957.

(2)Chen, C.-K.; Huang, C.-C.; -T., C. H. Biosens. Bioelectron. 2010, 25, 1922.

(3)(a) Wang, S.; Sato, S.; Kimura, K. Chem. Mater. 2003, 15, 2445(b) Sun, Y.; Xia, Y. Science 2002, 298, 2176.

(4)(a) Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209(b) Han, M. S.; R., A. K.; Lytton-Jean; Mirkin, C. A. J. Am. Chem. Soc. 2006, 128, 4954.

(5)(a) Jhoo, J.-W.; Lo, C.-Y.; Li, S.; Sang, S.; Heinze, T. M.; Ho, C.-T. J. Agric. Food Chem. 2005, 53, 6146(b) Tanaka, T.; Matsuo, Y.; Kouno, I. Int. J. Mol. Sci. 2010, 11, 14(c) Tanaka, T.; Kouno, I. T. Tanaka 2002 58, 8851.

(6)(a) Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A. Chem. Soc. Rev. 2008, 37, 885 (b) Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Appl. Phys. Lett. 2009, 94, 153113(c) Michota, A.; Bukowska, J. J. Raman Spectrosc. 2003, 34, 21.

(7)Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Nie, S. Nat. Biotechnol. 2008, 26, 83

(8)Kim, K.; Lee, H. S.; Yu, H. D.; Park, H. K.; Kim, N. H. Colloids Surf., A 2008 316, 1.

(9)Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004, 126, 4943.

(10)Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353.

(11)(a) Yu, J.; Yue, L.; Liu, S.; Huang, B.; Zhang, X. J. Colloid Interface Sci. 2009, 334, 58(b) Tai, Y.; Yamaguchi, W.; Okada, M.; Ohashi, F.; Shimizu, K.-i.; Satsuma, A.; Tajiri, K.; Kageyama, H. J. Catal. 2010, 270, 234(c) Yang, J. C.; Kim, Y. C.; Shul, Y. C.; Shin, C. H.; Lee, T. K. Appl. Surf. Sci. 1997, 121, 525.

(12)Tai, Y.; Yamaguchi, W.; Okada, M.; Ohashi, F.; Shimizu, K.-i.; Satsuma, A.; Tajiri, K.; Kageyama, H. J. Catal. 2010, 270, 234.

(13)Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. J. Photochem. Photobiol., A 1995, 177.

(14)Orlov, A.; Jefferson, D. A.; Macleod, N.; Lambert, R. M. Catal. Lett. 2004, 92, 1.

(15)Zhang, Y.; Crittenden, J. C.; Hand, D. W.; Perram, D. L. Environ. Sci. Technol. 1994, 28, 435.

(16)Yogi, C.; Kojima, K.; Takai, T.; Wada, N. J. Mater. Sci. 2009, 44, 821.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔