(3.235.11.178) 您好!臺灣時間:2021/03/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林黎華
研究生(外文):Li-Hua Lin
論文名稱:Aspergillus terreus 真菌二次代謝物 Terrein 用以抑制抗藥性乳癌幹細胞生長之研究
論文名稱(外文):Investigation and utilization of the secondary metabolite Terrein from Aspergillus terreus to suppress the growth of drug-resistant breast cancer stem/initiating cells
指導教授:吳世雄吳世雄引用關係
指導教授(外文):Shih-Hsiung Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:60
中文關鍵詞:乳癌癌幹細胞邊緣族群特性ABCG2Terrein二次代謝產物抗藥性
外文關鍵詞:breast cancercancer stem/initiating cellsside populationABCG2Terreinsecondary metabolitedrug-resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近的研究顯示,經過癌症傳統治療後仍存在些許抗藥性乳癌幹細胞,而可能會導致癌症復發。因此最新的乳癌治療策略即是發展出專一有效地抑制乳癌幹細胞的藥物,如用以減少乳癌幹細胞自我更新生長、抑制多重抗藥轉運蛋白功能、或可促進細胞凋亡途徑。一般癌幹細胞會表現多重抗藥性轉運蛋白ABC transporter,如MDR1、MRP3和ABCG2,而可將抗癌藥物,如: mitoxanthrone、gemcitabine、doxorubicin或5-fluorouracil排出細胞外。ABCG2是屬於 ATP-binding cassette transporter (ABC) subfamily G,廣泛表現於幹細胞和癌幹細胞中,事實上,ABCG2又名為breast cancer resistance protein (BCRP),最早於doxorubicin抗藥性之MCF-7乳癌細胞株被分離出來,已知ABCG2可調控在幹細胞中的吡喀紫質恆定性 (protoporphyrin homeostasis) ,其中可將Hoechst 33342染料外排而形成邊緣族群特性 (side-population) 也又廣泛應用在幹細胞與癌幹細胞的鑑定上。因此研究推測ABCG2 不只會外排有害於生物體之異物,還會參與調控細胞代謝和自我更新能力。
Terrein 是一種真菌代謝產物,最先是由Aspergillus terreus 真菌分離出,但有關Terrein其生物活性的研究極少。本研究目的是探討Terrein是否具有潛力可做為抑制抗藥性乳癌幹細胞之新藥物;而紫杉醇是最有效治療乳癌的藥物,所以在研究中,我們以紫杉醇做為對照藥物。在目前的研究中我們利用Annexin V和propidium iodide 染色方法首次發現低濃度Terrein足以造成MCF-7 乳癌細胞的凋亡和使其生長停滯於G2M生長期。更進一步的利用邊緣族群特性分析(side-population analysis) 發現,Terrein明顯減少具邊緣族群特性的細胞。而利用吡喀紫質外排測定法 (protoporphyrin IX efflux assay) 中發現Terrein也具抑制紫質外排的效果,推測其具抑制乳癌幹細胞活性的功能。總結本研究發現Terrein對具抗藥性乳癌細胞生長具毒殺作用,並推測Terrein也能夠抑制多重抗藥性轉運蛋白ABCG2的功能並且能進一步減低乳癌幹細胞活性並達成抑制乳癌生長的效果,具有潛力可做為抑制抗藥性乳癌幹細胞之新藥物。


Recent studies have demonstrated there are cancer stem/initiating cells existed in breast cancer which display drug resistance to many conventional therapies and can cause cancer relapse. Therefore, the most promising strategy for breast cancer therapeutics is to develop methods that can either suppress self-renewal expansion, inhibit the function of multidrug transporters, or to induce apoptosis on cancer stem/initiating cells. Cancer stem/initiating cells expressed ABC transporters such as MDR1, MRP3 and ABCG2 that can efflux anticancer drugs such as mitoxanthrone, gemcitabine, doxorubicin or 5-fluorouracil. ABCG2, belongs to the ATP-binding cassette transporter (ABC) subfamily G, expressed in wide variety of stem cells and cancer stem cells. In fact, ABCG2, also named as breast cancer resistance protein (BCRP), was first discovered from a doxorubicin-resistant MCF-7 breast cancer cell line. ABCG2 is a Hoechst 33342 dye efflux pump that mediates side-population phenotype and also regulates porphyrin homeostasis in stem cells. It has been proposed that ABCG2 not only functions as a xenobiotic pump, but also affect cell metabolsm and self-renewal ability of stem cells and cancer stem cells.
Terrein is a fungal metabolite and was first isolated from Aspergillus terreus. However, relatively little is known about Terrein. The aim of the current work is to determine if Terrein can serve as a potential compound that can target drug-resistant breast cancer initiating cells. In the current work, we used Taxol, the most effective drug for breast cancer, as a comparison. We found for the first time that low concentration of Terrein (1 nM) was sufficient to suppress the expansion of MCF-7 cells. The suppressive effect was either mediated by induction of apoptosis and cause of cell arrest at the G2M phase. We also revealed treatment of Terrein inhibited side-population and protoporphyrin IX (PPIX) efflux which may lead to suppression of the activity of breast cancer stem/initiating cells. In conclusion, Terrein displayed cytotoxicity against drug-resistant breast cancer cells. Moreover, the current work also indicates that Terrein is a potent inhibitor for ABCG2 transporter which can possibly lead to reduction in the activity of cancer stem/initiating cells. We therefore assume Terrein can possibly used as a therapeutics for breast cancer stem cells.




口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
Table of contents vi
Abbreviations ix
List of Figures xi
List of Tables xii
1. Introduction 1
1.1 Breast cancer and cancer stem/initiating cells 1
1.2 Side population 4
1.3 ABCG2 transporters 4
1.3.1 ATP-binding cassette (ABC) transporters 4
1.3.2 Identification of ABCG2 transporter 7
1.3.3 Substrates and inhibitor of ABCG2 transporter 9
1.3.4 Terrein 12
2. Materials and methods 15
2.1 Materials 15
2.2 Fungi materials 17
2.3 Cell culture 17
2.4 Chemical exposure 18
2.5 Determination of the doubling time of MCF-7 cells 18
2.6 Cytotoixicty effects of Taxol or Terrein 18
2.7 Immunostaining of ABCG2 and fluorescence-activated cell sorting (FACS) analysis 19
2.8 MTT assay 20
2.9 Apoptotic analysis using Annexin V staining 20
2.10 Cell cycle profiles 21
2.11 Side population analysis 21
2.12 ALA-induced Protoporphyrin IX efflux 22
2.13 Determination the percentages of vacuolized cells 23
2.14 Live and Dead detection 23
2.15 Immunostaining of ABCG2 and fluorescence microscope analysis 24
2.16 Statistical analysis 25
3. Results 26
3.1 The cytotoxic effects of Terrein 26
3.1.1 Determination of cell growth curve and the doubling time of MCF-7 26
3.1.2 The cytotoxic effects of Taxol on MCF-7 cells 28
3.1.3 Determination of bioactivity of the compounds extracted from Aspergillus terreus utilizing protoporphyrin IX efflux assay 30
3.1.4 The cytotoxicity of Terrein on MCF-7 cells 33
3.1.5 Treatment of Terrein induced cell apoptosis 35
3.1.6 The cell cycle profiles of Terrein-treated MCF-7 cells 38
3.2 Terrein inhibited the expansion of ABCG2+ breast cancer cells 39
3.2.1 To assess whether Terrein treatment can reduce side-population phenotype 39
3.2.2 To assess whether Terrein treatment can suppress protoporphyrin IX efflux 41
3.2.3 Terrein treatment suppressed the growth of ABCG2+ MCF-7 subpopulation 43
3.3 Terrein induced morphology changes 45
4. Discussion 52
Reference 55


1. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755-768.
2. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105-111.
3. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, et al. (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106: 13820-13825.
4. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98: 1777-1785.
5. Yu F, Yao H, Zhu P, Zhang X, Pan Q, et al. (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109-1123.
6. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, et al. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100: 672-679.
7. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730-737.
8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983-3988.
9. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253-1270.
10. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506-5511.
11. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112: 4793-4807.
12. Arnes JB, Collett K, Akslen LA (2008) Independent prognostic value of the basal-like phenotype of breast cancer and associations with EGFR and candidate stem cell marker BMI-1. Histopathology 52: 370-380.
13. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36 Suppl 1: 59-72.
14. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, et al. (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138: 592-603.
15. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, et al. (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65: 6207-6219.
16. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183: 1797-1806.
17. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99: 507-512.
18. Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, et al. (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8: 22-28.
19. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, et al. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7: 1028-1034.
20. Goodell MA (2002) Multipotential stem cells and ''side population'' cells. Cytotherapy 4: 507-508.
21. Welm B, Behbod F, Goodell MA, Rosen JM (2003) Isolation and characterization of functional mammary gland stem cells. Cell Prolif 36 Suppl 1: 17-32.
22. Behbod F, Xian W, Shaw CA, Hilsenbeck SG, Tsimelzon A, et al. (2006) Transcriptional profiling of mammary gland side population cells. Stem Cells 24: 1065-1074.
23. Montanaro F, Liadaki K, Volinski J, Flint A, Kunkel LM (2003) Skeletal muscle engraftment potential of adult mouse skin side population cells. Proc Natl Acad Sci U S A 100: 9336-9341.
24. Wulf GG, Luo KL, Jackson KA, Brenner MK, Goodell MA (2003) Cells of the hepatic side population contribute to liver regeneration and can be replenished with bone marrow stem cells. Haematologica 88: 368-378.
25. Majka SM, Beutz MA, Hagen M, Izzo AA, Voelkel N, et al. (2005) Identification of novel resident pulmonary stem cells: form and function of the lung side population. Stem Cells 23: 1073-1081.
26. Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, et al. (2004) Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 22: 1305-1320.
27. Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, et al. (2006) Limbal epithelial side-population cells have stem cell-like properties, including quiescent state. Stem Cells 24: 86-94.
28. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, et al. (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265: 262-275.
29. Kim M, Morshead CM (2003) Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J Neurosci 23: 10703-10709.
30. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, et al. (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101: 14228-14233.
31. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11: 1156-1166.
32. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275-284.
33. Sarkadi B, Ozvegy-Laczka C, Nemet K, Varadi A (2004) ABCG2 -- a transporter for all seasons. FEBS Lett 567: 116-120.
34. Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22: 7340-7358.
35. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, et al. (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95: 15665-15670.
36. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58: 5337-5339.
37. Miyake K, Mickley L, Litman T, Zhan Z, Robey R, et al. (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59: 8-13.
38. Kage K, Tsukahara S, Sugiyama T, Asada S, Ishikawa E, et al. (2002) Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 97: 626-630.
39. Rocchi E, Khodjakov A, Volk EL, Yang CH, Litman T, et al. (2000) The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun 271: 42-46.
40. Scheffer GL, Maliepaard M, Pijnenborg AC, van Gastelen MA, de Jong MC, et al. (2000) Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res 60: 2589-2593.
41. Mohrmann K, van Eijndhoven MA, Schinkel AH, Schellens JH (2005) Absence of N-linked glycosylation does not affect plasma membrane localization of breast cancer resistance protein (BCRP/ABCG2). Cancer Chemother Pharmacol 56: 344-350.
42. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55: 3-29.
43. Mao Q, Unadkat JD (2005) Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7: E118-133.
44. Robey RW, Steadman K, Polgar O, Bates SE (2005) ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 4: 187-194.
45. Millon SR, Ostrander JH, Yazdanfar S, Brown JQ, Bender JE, et al. (2010) Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes. J Biomed Opt 15: 018002.
46. Nielsen HM, Aemisegger C, Burmeister G, Schuchter U, Gander B (2004) Effect of oil-in-water emulsions on 5-aminolevulinic acid uptake and metabolism to PpIX in cultured MCF-7 cells. Pharm Res 21: 2253-2260.
47. Krammer B, Plaetzer K (2008) ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci 7: 283-289.
48. Susanto J, Lin YH, Chen YN, Shen CR, Yan YT, et al. (2008) Porphyrin homeostasis maintained by ABCG2 regulates self-renewal of embryonic stem cells. PLoS One 3: e4023.
49. Rabindran SK, He H, Singh M, Brown E, Collins KI, et al. (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 58: 5850-5858.
50. Bailey AM, Cox RJ, Harley K, Lazarus CM, Simpson TJ, et al. (2007) Characterisation of 3-methylorcinaldehyde synthase (MOS) in Acremonium strictum: first observation of a reductive release mechanism during polyketide biosynthesis. Chem Commun (Camb): 4053-4055.
51. Crawford JM, Dancy BC, Hill EA, Udwary DW, Townsend CA (2006) Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci U S A 103: 16728-16733.
52. Trisciuoglio D, Uranchimeg B, Cardellina JH, Meragelman TL, Matsunaga S, et al. (2008) Induction of apoptosis in human cancer cells by candidaspongiolide, a novel sponge polyketide. J Natl Cancer Inst 100: 1233-1246.
53. Sanchez JF, Chiang YM, Wang CC (2008) Diversity of polyketide synthases found in the Aspergillus and Streptomyces genomes. Mol Pharm 5: 226-233.
54. Zhou H, Zhan J, Watanabe K, Xie X, Tang Y (2008) A polyketide macrolactone synthase from the filamentous fungus Gibberella zeae. Proc Natl Acad Sci U S A 105: 6249-6254.
55. Beltran-Alvarez P, Cox RJ, Crosby J, Simpson TJ (2007) Dissecting the component reactions catalyzed by the actinorhodin minimal polyketide synthase. Biochemistry 46: 14672-14681.
56. Raistrick H, Smith G (1935) Studies in the biochemistry of micro-organisms: The metabolic products of Aspergillus terreus Thom. A new mould metabolic product-terrein. Biochem J 29: 606-611.
57. Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, et al. (2004) Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 61: 2878-2885.
58. Park SH, Kim DS, Lee HK, Kwon SB, Lee S, et al. (2009) Long-term suppression of tyrosinase by terrein via tyrosinase degradation and its decreased expression. Exp Dermatol 18: 562-566.
59. Otake M, Nishiwaki M, Kobayashi Y, Baba S, Kohno E, et al. (2003) Selective accumulation of ALA-induced PpIX and photodynamic effect in chemically induced hepatocellular carcinoma. Br J Cancer 89: 730-736.
60. Orth K, Russ D, Steiner R, Beger HG (2000) Fluorescence detection of small gastrointestinal tumours: principles, technique, first clinical experience. Langenbecks Arch Surg 385: 488-494.
61. Schmid I, Uittenbogaart CH, Giorgi JV (1994) Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 15: 12-20.
62. Saunders DE, Lawrence WD, Christensen C, Wappler NL, Ruan H, et al. (1997) Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells. Int J Cancer 70: 214-220.
63. Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60: 47-50.
64. Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, et al. (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65: 1485-1495.
65. Lamparska-Przybysz M, Gajkowska B, Motyl T (2005) Cathepsins and BID are involved in the molecular switch between apoptosis and autophagy in breast cancer MCF-7 cells exposed to camptothecin. J Physiol Pharmacol 56 Suppl 3: 159-179.
66. Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, et al. (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 113 ( Pt 7): 1189-1198.
67. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, et al. (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279: 24218-24225.
68. Chen Z, Liu F, Ren Q, Zhao Q, Ren H, et al. (2010) Suppression of ABCG2 inhibits cancer cell proliferation. Int J Cancer 126: 841-851.
69. Kim DS, Lee HK, Park SH, Lee S, Ryoo IJ, et al. (2008) Terrein inhibits keratinocyte proliferation via ERK inactivation and G2/M cell cycle arrest. Exp Dermatol 17: 312-317.
70. Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, et al. (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 99: 15649-15654.
71. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26: 39-57.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔