|
(1)Madigan, M. T., Marrs, B. L. (1997) Extremophiles. Sci. Am. 276, 82-87. (2)Stetter, K. O. (1998) In Extremophiles:Microbial Life in Extreme environments. Wiley-Liss:New York. (3)Stetter, K. O. (1999) Extremophiles and their adaptation to hot environments. FEBS Lett. 452, 22-25. (4)Brock, T. D. (1986) Thermophiles: General, Molecular, and Applied Microbiology. Wiley:New York. (5)Brock, T. D., Freeze, H. (1987) Thermophilic Microorganism and Life at High Temperature. Spinger- Verlag:New York. (6)Brock, T. D., Freeze, H. (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289-297. (7)Quinn, P. J., Williams, W. P. (1978) Plant lipids and their role in membrane function. Prog. Biophys. Mol. Biol. 34, 109-179. (8)Sastry, P. S. (1974) Glycosyl glycerides. Adv. Lipid Res. 12, 251-310. (9)Oshima, M., Yamakawa, T. (1974) Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum. Biochemistry 13, 1140-1146. (10)Pasciak, M., Holst, O., Lindner, B., Mordarska, H., Gamian, A. (2003) Novel bacterial polar lipids containing ether-linked alkyl chains, the structures and biological properties of the four major glycolipids from Propionibacterium propionicum PCM 2431 (ATCC 14157T). J. Biol. Chem. 278, 3948-3956. (11)Pasciak, M., Holst, O., Lindner, B., Mierzchala, M., Grzegorzewicz, A., Mordarska, H., Gamian, A. (2004) Structural and serological characterization of the major glycolipid from Rothia mucilaginosa. Biochim. Biophys. Acta 1675, 54-61. (12)Manca, M. C., Nicolaus, B., Lanzotti, V., Trincone, A., Gambacorta, A., Peter, K. J. Egge, H., Huber, R., Stetter, K. O. (1992) Glycolipids from Thermotoga maritima, a hyperthermophilic microorganism belonging to Bacteria domain. Biochim. Biophys. Acta 1124, 249-252. (13)Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., König, H., Rachel, R., Rockinger, I., Fricke, H., Stetter, K. O. (1992) Aquifex pyrophilus gen.nov. sp.nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340-351. (14)Langworthy, T. A., Holzer, G.,Zeikus, J. G., Tornabene, T. G. (1983) Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe. Thermodesulfotobacterium commune. Syst. Appl. Microbiol. 4, 1-17 (15)De Rosa, M., Gambacorta, A., Huber, R., Lanzotti, V., Nicolaus, B., Stetter, K. O. (1989) Lipid structures in Thermotoga maritima. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and its potential for biotechnology. Elsevier, Amsterdam New York (16)Wait, R., Carreto, L., Nobre, M. F., Ferreira, A. M., da Costa, M. S. (1997) Characterization of novel long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids. J. Bacteriol. 179, 6154-6162. (17)Prado, A., da Costa, M. S., Laynez, J., Madeira, V. M. (1988) Effect of Growth Temperature on Lipid Composition of two Strains Thermus sp.. J. Gen. Microbiol., 134, 1653-1660. (18)Donato, M. M., Seleiro, E. A., da Costa, M. S. (1990) Polar lipid and fatty acid composition of strains of the genus Thermus. Syst. Appl. Microbiol. 13,234-239. (19)Yang, F. L., Lu, C. P., Chen, C. S. Chen, M. Y., Hsiao, H. L., Su, Y., Tsay, S. S., Zou, W., Wu, S. H. (2004) Structural determination of the polar glycoglycerolipids from thermophilic bacteria Meiothermus taiwanensis. Eur. J. Biochem. 271,4545-4551. (20)Lu, T. L., Chen, C. S., Yang, F. L., Fung, J. M., Chen, M. Y., Tsay, S. S., Li, J., Zou, W., Wu, S. H. (2004) Structure of a major glycolipid from Thermus oshimai NTU-063. Carbohydr. Res. 339, 2593-2598. (21)Price, N. P., (2008) Permethylation linkage analysis techniques for residual carbohydrates. Appl Biochem. Biotechnol. 148, 271-276. (22)Hakomori, S. I. (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 55, 205-208. (23)Sandford, P. A., Conrad, H. E. (1966) The structure of the aerobacter aerogenes A3(S1) polysaccharide. I. A reexamination using improved procedures for methylation analysis. Biochemistry 5, 1508-1517. (24)Ray, P. H., White, D. C., Brock, T. D. (1971) Effect of growth temperature on the lipid composition of Thermus aquaticus. J. Bacteriol. 108, 227-235. (25)Williams, R.A.D., Da Costa, M.S., (1992) The genus Thermus and related microorganisms. In: Balows, A., Truper, H. G., Dworkin, M., Harder, W., Schleifer, K. H. (eds.) The Prokaryotes, 2nd edn., 3745-3753, Springer, New York. (26)Ferreira, A. M., Wait, R., Nobre, M. F., Costa, M. S. (1999) Characterization of glycolipids from Meiothermus spp.. Microbiology 145, 1191-1199. (27)Silva, Z., Borges, N., Martins, L. O., Wait, R., Da Costa, M. S., Santos, H. (1999) Combined effect of the growth temperature and salinity of the medium of the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3, 163-172. (28)Forterre, P., Bouthier De La Tour, C.; Philippe, H.; Duguet, M. (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. Trends Genet. 16, 152-154. (29)Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H. E., McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen, L. S., Miller, M. D., McPhillips, T. M., Miller, M. A., Scheibe, D., Canaves, J. M., Guda, C., Jaroszewski, L., Selby, T. L., Elsliger, M. A., Wooley, J., Taylor, S. S., Hodgson, K. O., Wilson, I. A., Schultz, P. G., Stevens, R. C. (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline Proc. Natl. Acad. Sci. USA 99, 11664-11669. (30)De Groot, A., Chapon, V., Servant, P., Christen, R., Saux, M. F., Sommer, S., Heulin, T. (2005) Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the sahara desert. Int. J. Syst. Evol. Microbiol. 55, 2441-2446. (31)Dutronc, Y., Porcelli, S. A. (2002) The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 60, 337-353. (32)Parekh, V. V., Wilson, M. T., Van Kaer, L. (2005) iNKT-cell responses to glycolipids. Crit. Rev. Immunol. 25, 183-213. (33)Krishnan, L., Dicaire, C. J., Patel, G. B., Sprott, G. D. (2000) Archaeosome vaccine adjuvants induce strong humoral, cell-mediated and memory responses: comparison to conventional liposomes and alum. Infect. Immun. 68, 54-63. (34)Kinjo, Y., Wu, D., Kim, G., Xing, G. W., Poles, M. A., Ho, D. D., Tsuji, M., Kawahara, K., Wong, C. H., Kronenberg, M. (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520-525. (35)Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia- Navarro, R., Benhnia, M. R., Zajonc, D. M., Ben-Menachem, G., Ainge, G. D., Painter, G. F., Khurana, A., Hoebe, K., Behar, S. M., Beutler, B., Wilson, I. A., Tsuji, M., Sellati, T. J., Wong, C. H., Kronenberg, M. (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978-986. (36)Stetson, D. B., Mohrs, M., Reinhardt, R. L., Baron, J. L., Wang, Z. E., Gapin, L., Kronenberg, M., Locksley, R. M. (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069-1076. (37)Bruno, A., Rossi, C., Marcolongo, G., Di Lena, A., Venzo, A., Berrie, C. P., Corda, D. (2005) Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. Eur. J. Pharmacol. 524, 159-168. (38)Phoebe, C. H. Jr., Combie, J., Albert, F. G., Van Tran, K., Cabrera, J., Correira, H. J., Guo, Y., Lindermuth, J., Rauert, N., Galbraith, W., Selitrennikoff, C. P. (2001) Extremophilic organisms as an unexplored source of antifungal compounds. J. Antibiot. (Tokyo) 54, 56-65. (39)Carreto, L.; Wait, R.; Nobre, M. F.; da Costa, M. S. (1996) Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus spp. J. Bacteriol. 178, 6479-6486. (40)Albuquerque, L., Ferreira, C., Tomaz, D., Tiago, I., Veríssimo, A., Da Costa, M. S., Nobre, M. F. (2009) Meiothermus rufus sp. nov., a new slightly thermophilic red-pigmented species and emended description of the genus Meiothermus. Syst. Appl. Microbiol. 32, 306-313. (41)Yang, Y. L., Yang, F. L., Jao, S. C., Chen, M. Y., Tsay, S. S., Zou, W., Wu, S. H. (2006) Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J. Lipid Res. 47, 1823-1832. (42)Yang, F. L., Hua, K. F., Yang, Y. L., Zou, W., Chen, Y. P., Liang, S. M., Hsu, H. Y., Wu, S. H. (2008) TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria. Glycoconj. J. 25, 427-439. (43)Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., Cobb, M. H. (2001) Mitogen- activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22, 153-183. (44)Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., Koseki, H., Taniguchi, M. (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626-1629. (45)Zeng, Z., Castano, A. R., Segelke, B. W., Stura, E. A., Peterson, P. A., Wilson, I. A. (1997) Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339-345. (46)Prigozy, T. I., Naidenko, O., Qasba, P., Elewaut, D., Brossay, L., Khurana, A., Natori, T., Koezuka, Y., Kulkarni, A., Kronenberg, M. (2001) Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664-667. (47)Miyamoto, K., Miyake, S., Yamamura, T. (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531-534. (48)Chiodoni, C., Stoppacciaro, A., Sangaletti, S., Gri, G., Cappetti, B., Koezuka, Y., Colombo, M. P. (2001) Different requirements for alpha-galactosylceramide and recombinant IL-12 antitumor activity in the treatment of C-26 colon carcinoma hepatic metastases. Eur. J. Immunol. 31, 3101-3110. (49)Sharp, R., and Williams, R. (1995) Thermus species. In biotechnology Handbooks. T. Atkinson and R. F. Sherwood, editors. Plenum, 143-148, New York (50)Anderson, R., Huang, Y. (1992) Fatty acids are precursors of alkylamines in Deinococcus radiodurans. J. Bacteriol. 174, 7168-7173. (51)Griffiths, E., Gupta, R. S. (2004) Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the deinococcus-thermus phylum. J. Bacteriol. 186, 3097-3107. (52)Iida-Tanaka, N., Fukase, K., Utsumi, H., Ishizuka, I. (2000) Conformational studies on a unique bis-sulfated glycolipid using NMR spectroscopy and molecular dynamics simulations. Eur. J. Biochem. 267, 6790-6797. (53)Iida-Tanaka, N., Hikita, T., Hakomori, S. I., Ishizuka, I.(2002) Conformational studies of a novel cationic glycolipid, glyceroplasmalopsychosine, from bovine brain by NMR spectroscopy. Carbohydr. Res. 337, 1775-1779. (54)Renou, J. P., Giziewicz, J. B., Smith, I. C. P., Jarrell, H. C. (1989) Glycolipid membrane surface structure: orientation, conformation, and motion of a disaccharide headgroup. Biochemistry 28, 1804-1814. (55)Jarrell, H. C., Wand, A. J., Giziewicz, J. B., Smith, I. C. P. (1987) The dependence of glyceroglycolipid orientation and dynamics on head-group structure. Biochim. Biophys. Acta 897, 69-82. (56)Chen, M. Y., Lin, G. H., Lin, Y. T., Tsay, S. S. (2002) Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int. J. Syst. Evol. Microbiol. 52, 1647-1654. (57)Ha, S. N., Madsen, L. J., Field, M., Brady, J. W. (1988) A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr. Res. 180, 207-221. (58)Acquotti, D., Poppe, L., Dabrowski, J., Von der Lieth, C. W., Sonnino, S., Tettamanti, G. (1990) Three- dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water- dodecylphosphocholine solutions. J. Am. Chem. Soc. 112, 7772-7778. (59)Poppe, L., Von der Lieth, C. W., Dabrowski, J. (1990) Conformation of the glycolipid globoside head group in various solvents and in the micelle-bound state. J. Am. Chem. Soc. 112, 7762-7771. (60)Nimmanpipug, P., Tashiro, K., Rangsiman, O. (2006) Factors governing the three-dimensional hydrogen-bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds (4): similarity in local conformation and packing structure between a complicated three-arm model compound and the linear model compounds. J. Phys. Chem. 110, 20858-20864. (61)Levery, S. B. (1991) 1H-NMR study of GM2 ganglioside: evidence that an interresidue amide-carboxyl hydrogen bond contributes to stabilization of a preferred conformation. Glycoconj. J. 8, 484-492. (62)Vicente, V., Martin, J., Jimenez-Barbero, J., Chiara, J. L., Vicent, C. (2004) Hydrogen-bonding cooperativity: using an intramolecular hydrogen bond to design a carbohydrate derivative with a cooperative hydrogen-bond donor centre. Chemistry 10, 4240-4251. (63)Poppe, L., Van Halbeek, H. (1991) Nuclear magnetic resonance of hydroxyl and amido, protons of oligosaccharides in aqueous solution: evidence for a strong intramolecular hydrogen bond in sialic acid residues. J. Am. Chem. Soc. 113, 363-365. (64)Blundell, C. D., Almond, A. (2007) Temperature dependencies of amide 1H- and 15N-chemical shifts in hyaluronan oligosaccharides. Magn. Reson. Chem. 45, 430-433.
|