(3.235.11.178) 您好!臺灣時間:2021/03/05 15:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游雅芝
研究生(外文):Ya-Chih Yu
論文名稱:小腦與大腦功能性磁振造影訊號關聯性之初步研究
論文名稱(外文):Functional Connectivity between Cerebellum and Cerebrum: A Preliminary fMRI Study Based on BOLD Correlation
指導教授:陳志宏陳志宏引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:67
中文關鍵詞:小腦靜息態功能性磁振造影功能性聯結血氧程度相關效應 (BOLD)連結前庭小腦系統脊髓性小腦系統大腦性小腦系統
外文關鍵詞:CerebellumResting-state fMRIFunctional connectivityBOLD-correlationVestibulocerebellumSpinocerebellumCerebrocerebellum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In previous studies, cerebellum had long been thought as only a part of the motor coordination system. However, more and more researches pointed out that cerebellum takes part in many other brain activities and even higher cognitive functions. In recent years, some studies focused on establishing anatomical atlas of cerebellum by using magnetic resonance imaging (MRI), while others concentrated on task-positive functional magnetic resonance imaging (fMRI) studies of the cerebellum.
Our study used non-invasive and task-free resting-state fMRI analysis to demonstrate the functional connectivity between different sub-regions of cerebellum and the whole cerebrum. We first applied four well-explored motor tasks to verify whether the results of resting fMRI analysis were comparable to those of traditional fMRI analysis. Secondly, the cerebellum was divided into 28 sub-regions based on its anatomical structures, and their blood oxygen level dependent (BOLD) correlations with whole cerebrum were analyzed respectively.
20 healthy subjects were enrolled. The results of region of interest (ROI)-based resting-state fMRI analysis revealed that the functional connectivity maps of different motor tasks were similar to those of the traditional BOLD fMRI analysis. Following this, the BOLD correlation analysis between 28 sub-regions of cerebellum and cerebrum were illustrated separately. Interestingly, sub-regions belonged to the same phylogenetic system displayed certain similar functional connectivity maps. Vestibulocerebellum had few BOLD correlations with cerebral cortex; spinocerebellum mainly contributing to the coordination system possessed strong BOLD correlations with motor-related cortexes; the youngest cerebrocerebellum had vigorous BOLD correlations with prefrontal and parietal lobes.

Contents
口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
Content VI
List of Figures IX
List of Tables XI
1. Introduction 1
1.1. Anatomic background 1
1.2. Task-based fMRI and resting-state fMRI experiments 2
1.3. Motor function in cerebellum and cerebrum 4
1.4. Previous researches in cerebellum 5
1.5. Motivation and hypothesis 6
2. Materials and Methods 8
2.1. Participants 8
2.2. MRI data acquisition 8
2.3. Experiment designs 9
2.4. Preprocessing 9
2.4.1. Motion correction 10
2.4.2. Normalization 10
2.4.3. Smooth 11
2.4.4. Detrend 11
2.4.5. Filter 11
2.5. Motor function analysis 12
2.5.1. BOLD fMRI with tasks 12
2.5.2. Functional connectivity of motor functions 12
2.6. Cerebellar-cerebral functional connectivity 13
2.6.1. SUIT template and ROI definition 13
2.6.2. Orthogonalize 14
2.6.3. Functional connectivity calculations 14
3. Results 15
3.1. Motor function relationship between motor cortex and cerebellum 15
3.2. Functional connection distribution in cerebellum 17
3.2.1. Vestibulocerebellum connectivity maps 17
3.2.2. Spinocerebellum connectivity maps 18
3.2.3. Cerebrocerebellum connectivity maps 20
4. Discussion 22
4.1. Motor function relationships 22
4.2. Cerebellar - cerebral connectivity 23
4.2.1. Vestibulocerebellum 24
4.2.2. Spinocerebellum 25
4.2.3. Cerebrocerebellum 26
4.2.4. Validations from cerebrum to cerebellum 26
4.2.5. Functional connectivity and anatomic fiber pathways 27
4.2.6. Somatotopic-liked Distributions 27
4.3. The effects of analysis procedures 28
4.3.1. ROI selections 28
4.3.2. Orthogonalization 29
4.4. Limitations 30
4.4.1. Variability of ‘Resting-state’ 30
4.4.2. Physiological basis of the low frequency fluctuations 31
4.4.3. Differences of analysis methods 31
5. Conclusion and Future Works 33
5.1. Conclusion 33
5.2. Future Works 34
5.2.1. Different levels of motor functions 34
5.2.2. Multi-modality analysis methods 34
5.2.3. Specific functional networks investigation of cerebellum 35
5.2.4. Cerebellum functional template 35
References 36
Appendix 40
A-1 Figures 40
A-2 Tables 66


References
1.Nieuwenhuys, R., The Human Central Nervous System. Fourth Edition ed. 2008.
2.http://www.colorado.edu/intphys/Class/IPHY3730/05cns.html.
3.Manni, E. and L. Petrosini, A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci, 2004. 5(3): p. 241-9.
4.Habas, C., et al., Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci, 2009. 29(26): p. 8586-94.
5.Duus, P., Topical diagnosis in neurology : anatomy, physiology, signs, symptoms. 3rd, rev. ed ed. 1998.
6.http://www.neuroanatomy.ca/diagrams/cerebellum.html.
7.http://www.dizziness-and-balance.com/anatomy/cerebellum.htm.
8.Thulborn, K.R., et al., Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta, 1982. 714(2): p. 265-70.
9.Ogawa, S. and T.M. Lee, Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med, 1990. 16(1): p. 9-18.
10.Kwong, K.K., et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A, 1992. 89(12): p. 5675-9.
11.Huettel, S.A., Functional magnetic resonance imaging. 2nd ed ed. 2009.
12.Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995. 34(4): p. 537-41.
13.Hampson, J.L., C.R. Harrison, and C.N. Woolsey, Cerebro-cerebellar projections and the somatotopic localization of motor function in the cerebellum. Res Publ Assoc Res Nerv Ment Dis, 1952. 30: p. 299-316.
14.Snider, R. and E. Eldred, Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol, 1951. 95(1): p. 1-16.
15.Grodd, W., et al., Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp, 2001. 13(2): p. 55-73.
16.Schmahmann, J.D. and J.C. Sherman, The cerebellar cognitive affective syndrome. Brain, 1998. 121 ( Pt 4): p. 561-79.
17.Stoodley, C.J. and J.D. Schmahmann, Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 2009. 44(2): p. 489-501.
18.O''Reilly, J.X., et al., Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex, 2010. 20(4): p. 953-65.
19.Allen, G., et al., Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage, 2005. 28(1): p. 39-48.
20.Schmahmann, J.D., et al., Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 1999. 10(3 Pt 1): p. 233-60.
21.Makris, N., et al., MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage, 2005. 25(4): p. 1146-60.
22.Diedrichsen, J., A spatially unbiased atlas template of the human cerebellum. Neuroimage, 2006. 33(1): p. 127-38.
23.Diedrichsen, J., et al., A probabilistic MR atlas of the human cerebellum. Neuroimage, 2009. 46(1): p. 39-46.
24.Margulies, D.S., et al., Mapping the functional connectivity of anterior cingulate cortex. Neuroimage, 2007. 37(2): p. 579-88.
25.Squire, L.R., Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992. 99(2): p. 195-231.
26.VanElzakker, M., et al., Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem, 2008. 15(12): p. 899-908.
27.van der Kallen, B.F., et al., [Functional MRI: imaging of motor cortex function]. Ned Tijdschr Geneeskd, 1996. 140(5): p. 248-54.
28.Kubler, A., V. Dixon, and H. Garavan, Automaticity and reestablishment of executive control-an fMRI study. J Cogn Neurosci, 2006. 18(8): p. 1331-42.
29.Hotz-Boendermaker, S., et al., Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. Neuroimage, 2008. 39(1): p. 383-94.
30.Slotnick, S.D. and L.R. Moo, Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory. Neuropsychologia, 2006. 44(9): p. 1560-8.
31.Zhang, J.X., H.C. Leung, and M.K. Johnson, Frontal activations associated with accessing and evaluating information in working memory: an fMRI study. Neuroimage, 2003. 20(3): p. 1531-9.
32.Buchsbaum, M.S., et al., Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers. Neurosci Lett, 2006. 404(3): p. 282-7.
33.Tulving, E., et al., Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc Natl Acad Sci U S A, 1994. 91(6): p. 2012-5.
34.Rama, P., et al., Working memory of identification of emotional vocal expressions: an fMRI study. Neuroimage, 2001. 13(6 Pt 1): p. 1090-101.
35.McDermott, K.B., et al., A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 2003. 41(3): p. 293-303.
36.Reverberi, C., et al., Neural basis of generation of conclusions in elementary deduction. Neuroimage, 2007. 38(4): p. 752-62.
37.Fransson, P., Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005. 26(1): p. 15-29.
38.Fransson, P., How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 2006. 44(14): p. 2836-45.
39.Jolliffe, Principal Component Analysis. 2002.
40.Hyvarinen, A. and E. Oja, Independent component analysis: algorithms and applications. Neural Netw, 2000. 13(4-5): p. 411-30.
41.http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm.
42.http://structural-communication.com/mente-encarnada/articles-philosophy-science.html.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔