|
References 1.Nieuwenhuys, R., The Human Central Nervous System. Fourth Edition ed. 2008. 2.http://www.colorado.edu/intphys/Class/IPHY3730/05cns.html. 3.Manni, E. and L. Petrosini, A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci, 2004. 5(3): p. 241-9. 4.Habas, C., et al., Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci, 2009. 29(26): p. 8586-94. 5.Duus, P., Topical diagnosis in neurology : anatomy, physiology, signs, symptoms. 3rd, rev. ed ed. 1998. 6.http://www.neuroanatomy.ca/diagrams/cerebellum.html. 7.http://www.dizziness-and-balance.com/anatomy/cerebellum.htm. 8.Thulborn, K.R., et al., Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta, 1982. 714(2): p. 265-70. 9.Ogawa, S. and T.M. Lee, Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med, 1990. 16(1): p. 9-18. 10.Kwong, K.K., et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A, 1992. 89(12): p. 5675-9. 11.Huettel, S.A., Functional magnetic resonance imaging. 2nd ed ed. 2009. 12.Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995. 34(4): p. 537-41. 13.Hampson, J.L., C.R. Harrison, and C.N. Woolsey, Cerebro-cerebellar projections and the somatotopic localization of motor function in the cerebellum. Res Publ Assoc Res Nerv Ment Dis, 1952. 30: p. 299-316. 14.Snider, R. and E. Eldred, Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol, 1951. 95(1): p. 1-16. 15.Grodd, W., et al., Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp, 2001. 13(2): p. 55-73. 16.Schmahmann, J.D. and J.C. Sherman, The cerebellar cognitive affective syndrome. Brain, 1998. 121 ( Pt 4): p. 561-79. 17.Stoodley, C.J. and J.D. Schmahmann, Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 2009. 44(2): p. 489-501. 18.O''Reilly, J.X., et al., Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex, 2010. 20(4): p. 953-65. 19.Allen, G., et al., Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage, 2005. 28(1): p. 39-48. 20.Schmahmann, J.D., et al., Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 1999. 10(3 Pt 1): p. 233-60. 21.Makris, N., et al., MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage, 2005. 25(4): p. 1146-60. 22.Diedrichsen, J., A spatially unbiased atlas template of the human cerebellum. Neuroimage, 2006. 33(1): p. 127-38. 23.Diedrichsen, J., et al., A probabilistic MR atlas of the human cerebellum. Neuroimage, 2009. 46(1): p. 39-46. 24.Margulies, D.S., et al., Mapping the functional connectivity of anterior cingulate cortex. Neuroimage, 2007. 37(2): p. 579-88. 25.Squire, L.R., Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992. 99(2): p. 195-231. 26.VanElzakker, M., et al., Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem, 2008. 15(12): p. 899-908. 27.van der Kallen, B.F., et al., [Functional MRI: imaging of motor cortex function]. Ned Tijdschr Geneeskd, 1996. 140(5): p. 248-54. 28.Kubler, A., V. Dixon, and H. Garavan, Automaticity and reestablishment of executive control-an fMRI study. J Cogn Neurosci, 2006. 18(8): p. 1331-42. 29.Hotz-Boendermaker, S., et al., Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. Neuroimage, 2008. 39(1): p. 383-94. 30.Slotnick, S.D. and L.R. Moo, Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory. Neuropsychologia, 2006. 44(9): p. 1560-8. 31.Zhang, J.X., H.C. Leung, and M.K. Johnson, Frontal activations associated with accessing and evaluating information in working memory: an fMRI study. Neuroimage, 2003. 20(3): p. 1531-9. 32.Buchsbaum, M.S., et al., Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers. Neurosci Lett, 2006. 404(3): p. 282-7. 33.Tulving, E., et al., Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc Natl Acad Sci U S A, 1994. 91(6): p. 2012-5. 34.Rama, P., et al., Working memory of identification of emotional vocal expressions: an fMRI study. Neuroimage, 2001. 13(6 Pt 1): p. 1090-101. 35.McDermott, K.B., et al., A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 2003. 41(3): p. 293-303. 36.Reverberi, C., et al., Neural basis of generation of conclusions in elementary deduction. Neuroimage, 2007. 38(4): p. 752-62. 37.Fransson, P., Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005. 26(1): p. 15-29. 38.Fransson, P., How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 2006. 44(14): p. 2836-45. 39.Jolliffe, Principal Component Analysis. 2002. 40.Hyvarinen, A. and E. Oja, Independent component analysis: algorithms and applications. Neural Netw, 2000. 13(4-5): p. 411-30. 41.http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm. 42.http://structural-communication.com/mente-encarnada/articles-philosophy-science.html.
|